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ABSTRACT

This paper aims at analyzing a macroeconomy with a continuum of infinitely-lived house-
holds that make rational decisions about consumption and wealth savings in the face of
employment and aggregate productivity shocks. The heterogeneous population structure
arises when households differ in wealth and employment status against which they cannot
insure. In this framework, the household wealth evolution is modeled as a mixture Markov
process. The stationary wealth distributions are obtained using eigen structures of tran-
sition matrices under the Perron-Frobenius theorem. This step is utilized repeatedly to
find the equilibrium state of the system, and it leads to an efficient framework for studying
the dynamic general equilibrium. A systematic evaluation of the equilibrium state under
different initial conditions is further presented and analyzed.

vii
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CHAPTER 1

INTRODUCTION

In 1928 a young mathematician named Frank Ramsey proposed a dynamic model to an-
swer a simple yet difficult question: “How much of its income should a nation save?”
Ramsey’s model lays a foundation for the macroeconomic theory, and variants of his dy-
namic optimization problem are the cornerstones of most models of economic fluctuations
and growth. This paper reviews recent research aimed at solving a theoretical model of the
macroeconomy (economy in a broad sense) with five key elements (i) it is based on rational
decision-making by consumers and a single firm owned collectively by these consumers; (ii)
it is dynamic, so that consumption and savings decisions are determined by intertemporal
decisions (current decisions that take into account the future choices); (iii) it has stochastic
aggregate shocks (random uncertainty at the economic level) which lead to upswings and
downswings at a macroeconomic level; (iv) it considers general equilibrium, so that inter-
est rates and wage rates are determined endogenously - determined by the interaction of
entities in the given economy; and (v) it has a heterogeneous population structure where
consumers differ in wealth and employment status against which they cannot insure.

Heterogeneous-agent based economies advance us a step closer to the study of ‘real’
economies, but they are harder to solve than homogeneous agent based economies where
there is a single representative agent (or consumer) in the entire economy. In a heterogeneous-
agent based economy, wealth is unevenly distributed among consumers, and part of the
model solution is to determine the asymptotic wealth distribution. We call this the station-
ary wealth distribution and finding it will be the prime focus of our work. Furthermore, the
stationary wealth distribution can be achieved at different initial conditions. Our focus is to
find the stationary wealth distribution at equilibrium. The wealth distribution at station-
ary equilibrium helps economists answer questions such as “What would be the long term
effects of changing wage rate (or unemployment benefits) on individual wealth?” Two kinds
- competitive and stationary - of equilibrium are discussed in this paper. A competitive
equilibrium is achieved using a time iterative technique while a stationary equilibrium is
achieved using a fixed point method. A bridging explanation will be made to connect these
two in chapter 4.

Algorithms to solve heterogenous agent models with endogenous wealth distributions
have been introduced in economic literature in the past 15 years with notable studies in [1],
[2], [3], [5], [6], [7], [9] and [12]. Most of these are iterative algorithms and take extremely
long to converge if a solution exists at all. We use dynamic programming to solve the

1
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household optimization problem. It should be noted that the translation of the household
optimization problem to a dynamic programming problem is not an easy task for non-
elementary economies. Miao [15] discusses this issue and lays a theoretical foundation for
problems in which dynamic programming can be used. We work with simple economies to
exemplify our technique. The other problem arises when a continuous function (infinite-
dimensional object) becomes a part of the consumer’s state space. Ideally we would like
to find an equilibrium for a continuum of agents with density as the state space argument.
As one could imagine, estimating a continuous function accurately in a reasonable time
frame in every period is no easy task. A variety of algorithms propose using projection
and perturbation techniques to resolve running time issues. Some of these are reviewed in
the next chapter. In this paper, we propose using eigen-analysis to compute intermediate
and equilibrium stationary probability densities using the Perron-Frobenius Theorem. The
approach is similar to [12] which maps the target eigenvector to a point in the probability
function space using a cost function. At the stationary equilibrium, we look1 for the limiting
point in the aggregate parameter space. To find this point, we set a grid on the aggregate
capital and search for a fixed point mapping in the Euclidean space. We also demonstrate
this mapping using a binary search algorithm that is found to be much faster and more ac-
curate. These mappings are highly nonlinear and involve a two tier process - optimization
using dynamic programming to find the household (consumer) consumption and wealth
policy, and computing the stationary density of the household wealth. Our approach is
innovative and robust, and we use it to explain convergence failures reported by [4] in a
model with idiosyncratic uncertainty. Once we formulate our method for the idiosyncratic
case, we apply it to an economy with aggregate and idiosyncratic shocks (referred to as
the general model). This general model is of prime interest to us. Our contributions are
summarized as follows:

1. One problem with solving heterogeneous agent based economies is that the individ-
ual’s state space has a continuous function (infinite-dimensional object). Estimating
this density is challenging and leads to inaccuracies and longer running times. We
propose an algorithm that avoids existing projection and perturbation techniques that
lead to inaccuracies. We propose using eigen-analysis to compute intermediate and
equilibrium stationary probability densities using the Perron-Frobenius Theorem.

2. The overall technique used here is a fixed point technique in contrast to the time
iterative technique. We bridge these techniques for the case of an economy with no
aggregate but with idiosyncratic shock.

3. Since fixed-point techniques take longer to converge relative to time iterative tech-
niques, we propose a modification of our algorithm inspired by binary search that is
faster and more accurate.

4. We set an aggregate capital grid and use our algorithm to explain convergence failures
reported by [4] in a heterogeneous economy with idiosyncratic shock and no aggregate
shock.

1[10] proves existence and uniqueness of the aggregate fixed points for the models considered in this
paper.

2
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5. For the model with both aggregate and idiosyncratic shocks, we investigate the exis-
tence or non-existence of the Stationary Equilibrium. The concern arises as agent’s
state space has an argument of cross-sectional wealth density that changes in every
period.

6. On finding the stationary equilibrium in the economy with both idiosyncratic and
aggregate shocks, we use our algorithms to estimate factor prices at the stationary
equilibrium.

To describe the general model mentioned above, we need a mathematical object that
is well suited to counting. This object is called measure. The key properties of measures
are associated with the fact that they act as counting or weighting mechanisms. We review
some measure theoretic concepts briefly below.

1.1 Mathematical Preliminaries

In this section, definitions are kept to a minimum (i.e. completion of measure, outer
measure, etc have been omitted). In addition, relevant theorems, propositions and defini-
tions are presented without proof.

Definition 1. A class A (nonvoid) of subsets of A of a nonvoid set Ω is called a σ−field
or a σ−algebra if:

• If A ∈ A, then Ac ∈ A

• If A1, A2, ... is a countable collection of sets in A, then the ∪∞n=1An ∈ A.

Borel (defined below) σ−algebras are the σ−algebras generated by a family of open sets.
If A is closed under complements and finite unions, then it is called a field or an algebra.

Proposition 1. Closure under intersections

• Arbitrary intersections of fields (or σ−fields) are fields (or σ−fields).

• There exists a minimal field or σ−field generated by (or containing) any specified class
C of subsets of Ω. For example,

σ[C] ≡ ∩Fα : Fαis a σ-field of subsets of Ω for which C ⊂ Fα

Definition 2. (Ω,A) is called a measurable space if A is a σ−field of subsets of Ω

Definition 3. Consider a set function µ : A → [0,∞] ( that is µ(A) ≥ 0 for each A ∈ A)
having µ(∅) = 0.

• If A is a σ−field and µ is countable additive - that is, the measure of disjoint sets
should be the sum of the measure of each - i.e.

µ

( ∞∑
n=1

An

)
=

( ∞∑
n=1

µ(An)

)
,

3
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then µ is called a measure on (Ω,A). The triple (Ω,A, µ) is called a measure space.
We call µ finite if µ(Ω) <∞. We call µ σ−finite if there is a measurable decomposition

of Ω as Ω =
∞∑
n=1

Ωn. Please note that probabilities are σ−finite measures.

Definition 4. Borel sets and Lebesgue Measure
Let I = {(a, b], (−∞, b], (a,∞) : a, b ∈ R}. Please note I is not a field. Let BI be the
collections of sets consisting of all finite disjoint unions of elements of I. So BI is a field.
Define B ≡ σ[BI ]. B is called the Borel sets of R. For each A ∈ BI , define λ(A) =
(
∑n

i=1 λ(Ai)), where A = (
∑n

i=1(Ai)) with Ai ∩ Aj = ∅∀i, j ∈ 1, 2, ..., n and λ(A) ≡ length
of the set A.

Proposition 2. Monotone property of measures
Let (Ω,A, µ) denote a measure space. Let (A1, A2, ...) be in A.

• If An ⊂ An+1∀n i.e. increasing sequence of sets, then µ (∪∞n=1An) = lim
n→∞

µ(An).

• if µ(An0) <∞ for some n0, and An+1 ⊂ An∀n i.e. decreasing sequence of sets, then
µ (∩∞n=1An) = lim

n→∞
µ(An).

• Whenever (A1, A2, ...) and ∪∞n=1An are all in A, then µ (∪∞n=1An) ≤
∞∑
n=1

µ(An). This

also holds for a measure on a field.

Theorem 1. Carathéodory Extension Theorem
A measure µ on a field C can be extended to a measure on the σ−field σ−[C] generated by
C.

A probability measure (σ−finite measure) defined on a field C has an unique extension2

to the σ−field σ− [C] generated by C. From this we can extend the Lebesgue measure from
BI to B. This extension is also called the Lebesgue measure.

Definition 5. A measure µ on the real line R assigning finite values to finite intervals is
called a Lebesgue-Stieltjes measure.

Definition 6. Generalized density function
A finite increasing function F on R that is right-continuous is called a generalized density
function (gdf). Then F (·) ≡ limy↗· F (y) denotes the left-continuous version of F . The
mass function of F is defined by ∆F (·) = F (·)−F (·), while F (a, b] = F (b)−F (a) ∀ a < b
is called the increment function of F .

Theorem 2. The correspondence theorem
Let F be defined as in definition 6. The relationship µ((a, b]) = F (a, b] for all −∞ ≤ a <
b ≤ +∞ establishes a 1 − to − 1 correspondence between the Lebesgue-Stieltjes measures µ
on B (i.e. on (R,B)) and the representative members of the equivalence classes of gdfs.

2The unique extension exists when the measure is σ−finite.

4
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For Lebesgue measure λ, a gdf is the identity function F (x) = x. In the general model
defined below, we use the correspondence theorem without any reference.

Proposition 3. A function g : (Ω,A)→ (R,B) is measurable if and only if g−1((−∞, b]) ∈
A for all b ∈ R.

Proposition 4. A function Q : (Ω,A) → (R,B) is a transition function if for all ω ∈ Ω,
Q(ω, ·) is a probability measure and if given A ∈ A, Q(·, A) is a measurable function.

Proposition 5. A measure λ∗ is an invariant distribution with respect to the transition
function Q if for all A ∈ A, λ∗(A) =

∫
AQ(ω,A)dλ∗.

We also use the Lebesgue measure on the product space. This measurable product space
is constructed in an analogous way as in R1. Please see reference [11] for this construction.
For now, we have given enough background to discuss the following model.

1.2 General Model

The model that we consider is a version of the economy described in [7] and [15]. Con-
sider an economy with a large number of infinitely-lived consumers subject to individual
endowment shocks and a single firm subject to aggregate productivity shocks in every pe-
riod. By shocks we mean uninsurable uncertainty. In this paper individual or idiosyncratic
endowment shocks will mean uncertainty in employment, and aggregate shocks uncertainty
at the economic level (crop failure or boost, technological failure or advancement, etc).
Time is discrete and denoted by t = 0, 1, 2, ... . Uncertainty is represented by a probability
product space (Ω× Z∞,F ,P) on which stochastic processes are defined. The state space
Ω captures individual shocks, while the state space Z∞ captures aggregate shocks. Let
Z0 = Z, Zt+1 = Z × Zt, and zt = (z0, z1, ..., zt) ∈ Zt an aggregate shock history at time
t. Likewise z∞ = (z0, z1, ...) ∈ Z∞ is the complete history and z0 = z0 ∈ Z0. Assume
Z ⊂ [z , z̄ ] ⊂ R++ (strictly positive space) is a bounded and countable set endowed with
a discrete topology. P represents a probability measure and F a σ-field defined on the
product space.

1.2.1 Consumers

Consumers or households or agents or individuals (all used interchangeably) are dis-
tributed on a continuous interval. In this paper, we use one continuous interval, but in
general, Borel subsets of R can be used. This is to allow the use of Lebesgue measure to
count the households. Consumers are ex ante identical in that they have the same prefer-
ences and their endowment shock processes are drawn from the same distribution. However,
consumers are ex post heterogeneous in the sense that they experience idiosyncratic em-
ployment shocks. Households save in good (employed) times and run down their wealth in
bad (unemployed) times, and hence, also vary in asset wealth.
Information structure and endowments: Consumer i ∈ I is endowed with one unit of labor
at the beginning of each period t and a deterministic asset level ai0 ∈ R++ at the beginning of
period 0. Labor endowment is subject to random shocks represented by a stochastic process
(εit)t≥0 valued in S ⊂ R+, where εi0 is a deterministic constant. Let S0 = S, St+1 = S0×St+1,

5
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and εti = (εi0, ε
i
1, ..., ε

i
t) with ε0i = εi0. Assume S ⊂ R+ is compact. Let the initial probability

distribution of asset holdings and endowment shocks be given by

Γ0(A× S) = µ(i ∈ I : (ai0, ε
i
0) ∈ A× S), (A× S) ∈ (B(R++)× B(S)). (1.1)

At the beginning of time t, consumer i observes his labor endowment shock εit and the
aggregate productivity shock, zt. His information is represented by a σ-field F it generated
by the information of the past and current shocks {εin, zn}tn=0. Assumptions on the shock
processes are given below to maintain measurability.

Assumption

• Given the history (εit, zt) = (εt, zt), (εit+1, zt+1) is drawn from the distributionQt+1(·, εt, zt)
for all i ∈ I;

• Qt+1(S × Z, ·) is measurable for all S × Z ∈ B(S)× B(R)

• Qt+1 has the Feller property:
∫
h(ε′, z′)Qt+1(dε′, dz′, ·) is a continuous function on

St × Zt for any real-valued, bounded and continuous function h on S× Z.

Consumption space: There is a single good. A consumption plan ci ≡ (cit)
∞
t=0 for

consumer i is a nonnegative real-valued process such that cit is F it -measurable. Let Ci
denote the set of all consumption plans for consumer i.
Budget and borrowing constraints: An asset accumulation plan (ait+1)t≥0 for consumer i is
a real-valued process such that ait+1 is F it -measurable.
In each period t, consumer i consumes cit and accumulates assets ait+1 subject to the budget
constraint:

cit + ait+1 = (1 + rt)ait + wts
i
t , given ai0. (1.2)

ait+1 ≥ 0, ∀i ∈ I. (1.3)

Let A = [0,∞), and Ai denote the set of all asset accumulation plans for consumer i
that satisfy 1.2 and 1.3. Equation 1.3 implies no borrowing. This simplifies the model so
we can ignore bonds and loan defaults. A consumption plan c ∈ Ci corresponding to an
asset accumulation plan a ∈ Ai is called (budget) feasible.
Preferences: Consumer i’s preferences are represented by an expected utility function de-
fined on Ci:

U(ci) = E

[ ∞∑
t=0

βtu(cit)

]
, (cit) ∈ Ci, (1.4)

where β ∈ (0, 1) is the discount factor, and the following assumption holds.
Assumption on consumer utility : u : R+ → R, is a bounded continuously differentiable,
strictly increasing and strictly concave function with lim

c→0
u′(ct) =∞.

In this paper, we will use the following constant relative risk aversion (CRRA)3 utility
function:

u(c) =

{
c1−η

1−η if η > 0 & η 6= 1
ln(c) if η = 1

(1.5)

3This function is commonly used in literature. η is called the coefficient of relative risk aversion and is
typically set to 2.

6
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Decision problem: Consumer i’s problem is given by:

sup
(cit,a

i
t+1)t≥0 ∈ Ci×Ai

U(ci). (1.6)

The plans (cit)t≥0 and (ait+1)t≥0 are optimal if the above supremum is achieved by (cit, a
i
t+1)t≥0 ∈

Ci ×Ai.
Allocation: An allocation ((cit, a

i
t+1)t≥0)i∈I is a collection of consumption and asset accu-

mulation plans. An allocation is admissible if both cit = ct(i, ω, zt) and ait+1 = at+1(i, ω, zt)
are B(I) ⊗ Ft - measurable where Ft is the smallest σ-algebra containing F it ∀i ∈ I,
Ft =

∨
i∈I F it , t ≥ 0. Since cit and ait+1 are F it -measurable ∀i ∈ I, they are also Ft-

measurable.

1.2.2 The Firm

There is a single firm renting capital at rate rt and hiring labor at wage wt at time t
from the households. It produces output

Yt = ztF (Kt, Nt) + (1− δ)Kt, (1.7)

where δ ∈ [0, 1] is the capital depreciation rate. Aggregate capital Kt is Ft−1 measurable,
and aggregate labor Nt is Ft measurable.
Assumption on Labor and Production: Nt is uniformly bounded, 0 ≤ Nt ≤ N̂ . The pro-
duction function F is homogeneous of degree one, strictly increasing, strictly concave, con-
tinuously differentiable, and satisfies: F (0, ·) = 0, F (·, 0) = 0, lim

K→0
FK(K, N̂) = ∞, and

lim
K→∞

FK(K, N̂) = 0.

Throughout this paper, we will set F (Kt, Nt) to be

F (Kt, Nt) = Kα
t N

1−α
t , α ∈ (0, 1). (1.8)

Firm’s Decision problem: The firm has to choose optimal Kt and Nt to maximize
profits based on the following problem:

sup
(Kt+1,Nt)

Yt − rtKt − wtNt. (1.9)

given wt and rt. Since the households collectively determine how much capital Kt and labor
Nt to supply using 1.6, the firm’s problem becomes a static one. The firm’s optimization
problem implies the following marginals:

rt = zt
∂F

∂Kt
(Kt, Nt)− δ (1.10)

and
wt = zt

∂F

∂Nt
(Kt, Nt), (1.11)

where the factor prices rt and wt are Ft - measurable.

7
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1.2.3 Competitive Equilibrium

A sequential competitive equilibrium consists of an admissible allocation ((ait+1, c
i
t)t≥0)i∈I

and price processes (rt, wt)t≥0 such that:

1. Given prices (rt, wt)t≥0, (ait+1, c
i
t)t≥0 solves problem 1.6 for µ-a.e. i.

2. Given prices (rt, wt)t≥0, the firm maximizes profits so that 1.10 and 1.11 are satisfied
for all t ≥ 0.

3. For all t ≥ 0, the labor market clears∫
I
εitµ(di) = Nt,

and the goods market clears

Ct +Kt+1 = ztF (Kt, Nt) + (1− δ)Kt,

where Ct =
∫
I c

i
tµ(di) and Kt =

∫
I a

i
tµ(di).

An aggregate distribution is defined over the individual states across the population. An
individual state is a pair of individual asset holdings and the history of individual shocks.
If individual asset holdings and the shock history at date t ≥ 0 are ait and εti for i ∈ I,
respectively, then the aggregate distribution, Γt ∈ P(A× St), is defined by

Γt(A×B) = µ(i ∈ I : (at(i), εt(i)) ∈ A×B), A×B ∈ B(A)× B(St). (1.12)

Thus Γt is a random measure as ait = ait(ω, z
t−1) and εit = εit(ω, z

t) are random variables
with (ω, zt) ∈ Ω× Zt.
Aggregate variables are written as expectations with respect to the so defined aggregate
distribution:

Kt =
∫
I a

i
tµ(di) =

∫
A×St

atΓt(da, dεt),

Nt =
∫
I ε
i
tµ(di) =

∫
A×St

εtΓt(da, dεt),

Ct =
∫
I c

i
tµ(di) = (1 + rt)Kt + wtNt −Kt+1,

where the last equation is obtained by substituting the budget constraint in 1.2 for cit.
Equations 1.10 and 1.11 induce the pricing functions rt : P(A × St) × Z → R and wt :
P(A× St)× Z→ R+ as follows:

rt(Γt, zt) = ztF1

(∫
A×St

atΓt(da, dεt),
∫

A×St
εtΓt(da, dεt)

)
− δ,

wt(Γt, zt) = ztF2

(∫
A×St

atΓt(da, dεt),
∫

A×St
εtΓt(da, dεt)

)
.

Competitive equilibrium is difficult to achieve even for a simple economy like the one
presented above. Furthermore, redefining the expected utility 1.6 as a dynamic program-
ming problem for more complex models is nontrivial. The solution of interest is not just a

8
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competitive equilibrium but a stationary equilibrium. In a stationary equilibrium, the ag-
gregate variables have converged. For instance, for the aggregate capital stock this implies
lim
t→∞

Kt → K∗. Stationary equilibrium solutions take a long time to converge if they exist

at all. In all the models discussed in this paper, two factors are of prime interest (i) how
to achieve stationary equilibrium (with a main focus on convergence of aggregate capital)
and (ii) the running time to obtain this potential solution.
The structure of this paper is as follows. Chapter 2 gives background on existing methods to
solve heterogeneous economies. Chapter 3 introduces a homogeneous agent based economy.
This chapter conceptually builds on the nature of the expected solution. Chapter 4 dis-
cusses a heterogeneous agent economy with idiosyncratic shock. Algorithms are discussed
in detail, and our approach to find the stationary density is introduced. We also introduce
a method to find the solution using stochastic simulation. In this case, the history becomes
part of the consumer’s state space. Since this is a common approach, we have described the
general model above using the stochastic simulation - time iterative - approach. Chapter 5
discusses the final model - an economy with both aggregate and idiosyncratic shocks. We
end with a discussion on the future direction of this work in chapter 6.

9
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CHAPTER 2

CURRENT LITERATURE

Models with heterogeneous agents and incomplete markets1 are becoming exceedingly im-
portant in macroeconomics and finance. As models get richer, solutions become harder.
This is because the household state space includes a cross-sectional distribution (referred
to as Γ in equation 1.12) which is a high dimensional object. In addition, the problems are
highly nonlinear.

The model defined in chapter 1 is relatively simple but nontrivial. There are of course
more complex models considered in the literature. The fact that different algorithms gen-
erate non-similar results motivates us to be careful in solving these models numerically.2 In
this paper, we present an algorithm that is robust across models. In the upcoming chapter,
we develop the nature of the expected solution and present our method to solve a model
of a heterogeneous economy with idiosyncratic risk. We present a comparative analysis of
the accuracy and speed of existing algorithms summarized in [4] for this type of economy.
We then use our algorithm to solve another heterogeneous economy with aggregate and
idiosyncratic risk. Our technique is a fixed point iteration algorithm. In the literature,
time iteration techniques3 are generally believed to be faster and more reliable than fixed
point iteration. In chapter 4, we contrast this by presenting an accurate and a reasonably
fast solution. Furthermore, we explain the failures reported by [4] in solving a model with
aggregate certainty and idiosyncratic risk.

Recursive numerical solutions of heterogeneous economies consist of functions of state
variables. Existing algorithms are based on either projection or perturbation methods or
both. The projection method consists of two steps. In the first step, a grid of state variables
is constructed and one defines at each grid point error terms that provide a measure for the
fit of any approximating function. Numerical procedures, such as quadrature methods to
calculate conditional expectations, may still be needed to calculate the value of the error
terms. The second step consists of choosing the coefficients of the numerical approximation
to obtain the best fit for the given loss function of the error terms.

To solve the general model presented in chapters 1 and 5, different algorithms follow
different techniques in summarizing the cross-sectional distribution of capital and employ-

1In economics, a complete market is one in which the complete set of possible gambles on future states-of-
the-world can be constructed with existing assets. In incomplete markets this is not possible as the gambles
have to be determined sequentially as the probabilistic state in the economy unfolds.

2Only a handful of models have an analytical solution.
3The general model presented in chapter 1 is set up using this technique.
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ment status with limited moments. These were first introduced by [7], [3] and [8]. The
Krusell and Smith [7] algorithm specifies a law of motion for these moments and finds the
approximating function using a simulation procedure. That is, given a set of policy rules,
a time series of cross-sectional moments is generated and new laws of motion for aggregate
moments are estimated using the simulated data. In particular, they only consider the
simple case that agents only use the first moment, i.e. the aggregate capital stock, of the
cross-sectional distribution. They find that the forecast error due to the omission of the
higher moments is extremely small. An important advantage of the stochastic-simulation
Krusell and Smith algorithm is that it is simple, intuitive and easy to program. As Algan
et al. [20] show, however, stochastic-simulation methods have two potential shortcomings.
First, the introduction of stochastic simulations produces sampling noise, which makes the
policy rules depend on a specific random draw. Second, the simulated endogenous data are
clustered around the mean, which implies that the accuracy of the approximation on the
tails is low. They argue that replacing a stochastic simulation with a non-stochastic one
can enhance the accuracy and speed of the algorithm. Therefore, it is of interest to assess
the accuracy of the stochastic-simulation version of the Krusell and Smith algorithm and
compare it with a non-stochastic-simulation version. Maliar et al. [18] does this and reports
that the Krusell and Smith method produces sufficiently accurate solutions. They further
simulate the economy using a finite number of agents while Young [19] uses a numerical
procedure to simulate a continuum of agents. Given the aggregate law of motion, the laws
of motion of the individual variables are then updated using standard projection methods.

Existing algorithms are based on either the projection method or the perturbation
method, sometimes on both. The projection method consists of two steps. In the first
step, a grid of the state variables is constructed and one defines at each grid point error
terms that provide a measure for the fit of any approximating function. The second step
consists of choosing the coefficients of the numerical approximation to obtain the best fit
for a given loss function of the error terms. The perturbation approach solves for the coef-
ficients of the Taylor expansion of the true set of policy functions h(x) around the steady
state. Using h(x) the choice variables can be substituted out of the model equations and one
obtains a system of equations with x as the only variable, that is, F (x) ≡ 0. The unknown
coefficients of the Taylor expansion are found by sequentially differentiating this system of
equations and evaluating the obtained equations at the steady state. A brief overview of
current literature on projection and perturbation methods is given below.

Projection Method 1 - Parameterization of the cross-sectional distribution: Reiter [12]
and Algan et al. [20] solve the model using projection. [12] uses a technique that involves
both projection and perturbation (see below) and computes a solution that is fully nonlinear
in the idiosyncratic shocks, but linear in the aggregate shocks. [20] uses parameterization of
the cross sectional distribution, but allows for more flexibility without increasing the number
of state variables. They both obtain the next period’s cross sectional moments by explicitly
integrating the individual choices instead of using simulation. They assume a functional
form for the cross sectional distributions and solve for the coefficients of the approximat-
ing distribution via simulation. The time varying coefficients become state variables. This
allows them to avoid a disadvantage of the Krusell and Smith [7] algorithm, namely the
points at which the aggregate law of motion is determined are chosen inefficiently. The
Krusell and Smith algorithm relies on the idea that the next period’s moments are perfectly
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forecastable, which is at best approximately true in a simulation with a finite number of
agents. One problem with the approaches in [12] and [20] is that it is not always clear how
to construct a sensible density. And describing the cross sectional density requires several
coefficients, and this increases the individual state space significantly.
Projection Method 2 - No Parameterization of the cross-sectional distribution: Den Haan
et al. [14] derive the aggregate laws of motion directly from the individual policy rules by
simply aggregating them. They avoid numerical integration by writing the individual policy
functions as linear combinations of basis functions of the individual state variables. This
analytic approach requires including the cross sectional averages of all the basis functions
that enter the individual policy functions. This infinitely dimensional object is also an
individual state variable. Algan et al. [20] propose an algorithm that uses projection meth-
ods and can - in principle - solve the model without relying on any simulation procedure.
Using projection procedures to solve a model with a continuum of agents typically requires
a parameterization of the cross-sectional distribution as in [3]. Algan et al. improve upon
the projection procedure by allowing more general approximating functions with more free
parameters without increasing the individual state space. For instance, if one uses a Nor-
mal density then there are two parameters, i.e., the mean and the variance, and thus two
state variables. But note that using a Normal density has implications for the higher-order
moments. These implied higher-order moments may not be correct. For example, a Normal
density implies no skewness, but the model to be solved may have a skewed distribution.
In that case one could allow for more general approximating functions with more free pa-
rameters. The information obtained from the simulation is used to modify the functional
form of the cross-sectional distribution. The underlying philosophy is the same as in [12],
but the implementation is less cumbersome.

Perturbation Methods: The approximating functions used in perturbation techniques
are continuous and differentiable and consequently, are not suited for the models presented
in this paper. Preston and Roca [21] solve a model similar to the general model considered
in this paper. They replace the borrowing constraints with a penalty function and the
finite-state Markov process with a stochastic process with continuous support. Kim et al.
[22] use the same approach but instead of perturbation they use the solution from a deter-
ministic economy (without uncertainty) without any constraint or penalty functions. This
approach optimizes computation time but makes the solution irrelevant to the target model.

Computational Speed: There are enormous differences in speed between the algorithms
discussed above. Perturbation algorithms are likely to outperform projection methods in
speed. So one needs to be careful in making a comparison across various techniques. The
existing time iteration methods have a wide range of computational speeds. The algorithms
introduced in this paper use a fixed point iteration method. Although a valid comparison
between this method and a time iteration approach may not be valid, we briefly comment
on the running time to put things into perspective. Our goal in this study is to present a
robust, reproducible and relatively accurate solution with reasonable computing time.

12
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CHAPTER 3

A SINGLE CONSUMER AND PRODUCER

DETERMINISTIC ECONOMY

Consider a simple model with a single consumer and producer economy. Assume for now
that there is no uncertainty - everything is deterministic, and this single person economy is
closed. Think of a farmer producing a commodity (say corn) for consumption in the current
period and for reproduction (saving seed to replant) in the next period. Let production
be defined by a deterministic function, F (kt, nt), where kt and nt are defined as amount of
input seed and labor, respectively.
Assumption on Labor and Production: nt is uniformly bounded, 0 ≤ nt ≤ n̂. The production
function, F (kt, nt), is assumed to have a simple analytic form. It is homogeneous of degree
one, strictly increasing, strictly concave, continuously differentiable, and satisfies: F (0, ·) =
0, F (·, 0) = 0, lim

k→0

∂F
∂k (k, n̂) =∞, and lim

k→∞
∂F
∂k (k, n̂) = 0.

Throughout this paper, we will use the Cobbs-Douglas production function:

F (kt, nt) = Dkαt n
1−α
t , α ∈ (0, 1), (3.1)

where D is a constant.
The farmer’s asset (corn/seed) at the end of the period t can be given as:

yt = F (kt, nt) + (1− δ)kt, (3.2)

where (1 − δ)kt is the seed saved in period t − 1 for reproduction. The value of seed is
depreciated using a constant δ ∈ (0, 1). This is not only because the value of seed decreases
over time, but also to build a conceptual analogy to wealth in the models to come. Let’s
assume labor supply is unconstrained and the farmer supplies 100% of it.
Thus, we set the labor supply to be a constant, 1 1, and obtain:

yt(kt) = yt := F (kt, 1) + (1− δ)kt

10 ≤ nt ≤ 1. Leisure is not valued and F2(kt, nt) is an increasing function. So the optimal occurs at
nt = 1 ∀ t.

13
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The following constraints in period t are then implied:

ct + kt+1 ≤ yt (3.3)
ct + kt+1 ≤ F (kt, 1) + (1− δ)kt (3.4)

0 ≤ kt+1 ≤ yt (3.5)
0 ≤ ct (3.6)
0 ≤ kt, (3.7)

where ct, kt+1 are the optimal consumption and future savings choices, respectively, that
the farmer has to make. The farmer’s choice of consumption ct

2 is aimed at maximizing
the lifetime3 utility below:

max
{ct}∞t=0

∑∞
t=0 β

tu(ct) (3.8)

⇒ max
{kt+1}∞t=0

∑∞
t=0 β

tu(yt − kt+1), (3.9)

such that the constraints in 3.3 are satisfied.
The utility function, u : R+ → R, is bounded continuously differentiable, strictly in-

creasing and strictly concave function with lim
c→0

u′(ct) =∞. In this paper we use the constant

relative risk aversion (CRRA) utility:

u(c) =

{
c1−η

1−η if 0 < η < 1 & η > 1
ln(c) if η = 1

, (3.10)

where η is called the coefficient of relative risk aversion.

Figure 3.1: Utility plot of a portfolio that contains one consumption good.

2We assume the interior solution so that ct > 0 implies ct = −kt+1 + (1− δ)kt + F (kt, 1).
3The farmer optimizes thinking he/she will live for infinite time and hence the sum is to infinity. This is

called an infinite time horizon problem.
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The utility can be seen as a preference curve and describes the willingness of the con-
sumer to forgo consumption today for a later time. That is, if ct < ct+s with t, s > 0 and
u(ct) > u(ct+s), then the consumer prefers to consume at time t over t + s. In general, a
higher the value of η implies greater the risk aversion. Please see Figure 3.1 4 for a brief
description. The portfolio, y (not related to production defined earlier), in the figure has
one consumption good. Setting the lifetime utility recursively : The farmer’s lifetime utility
can be expressed recursively5 as follows:

max
{ct}∞t=0

∑∞
t=0 β

tu(ct) (3.11)

⇒ max
{kt+1}∞t=0

∑∞
t=0 β

tu(yt − kt+1) (3.12)

⇒ V ∗(kt) = max
0≤kt+1≤yt

{u[yt − kt+1] + βV ∗(kt+1)}. (3.13)

The above process is called dynamic programming, a method of solving complex problems
by breaking them down into simpler steps. This enables us to view maximization over
infinite periods as a one step optimization problem. Restating the problem without time
subscripts we obtain: the function V ∗ : R+ → R as the limit of the following sequence of
steps

V s+1(k) = max
0≤k′≤y

{u[y − k′] + βV s(k′)}, (3.14)

where the next period values are expressed using the ‘prime’ notation. Of course, V ∗ is
an unknown function so far, but it is differentiable, strictly increasing and strictly concave.
[10] develops the existence and uniqueness of such a V for all the models discussed in this
paper.
The existence and uniqueness of such a V ∗ is derived from the Contraction Mapping The-
orem:

Theorem 3. If (S, ρ) is a complete metric space and T : S → S is a contraction mapping
with modulus β, then

• T has exactly one fixed point V in S, and

• for any V0 ∈ S, ρ(TnV0, V ) ≤ βnρ(V0, V ), n = 1, 2, 3, ..

See [10] for a proof.
In our case, successive iterations in the dynamic programming leads us to the limiting

point in the function space, V ∗, of interest. Once we find the converged value function,
V ∗, we are interested in determining the optimal policy. The sequence of {kt+1}∞t=0 that we
obtain is called the optimal policy, and the solution6 kt+1 = h(kt) ∀t is the optimal policy
function. We demonstrate this using an example.

4Taken from http://mitocw.udsm.ac.tz/OcwWeb/Sloan-School-of-Management/15-
433InvestmentsSpring2003/CourseHome/index.htm

5Functions considered in this paper can all be stated recursively.
6h : R+ → R is increasing and differentiable.
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Example 1 (The nature of solution in the deterministic model). Let’s consider an example
where the one-period utility function u with η = 1 and the production function F is given
with a constant labor input of 1. Please also note that we ignore the time subscripts.

u(c) = ln c
F (k) = kα, α ∈ (0, 1)

y(k) = F (k) + (1− δ)k,

respectively. Let α and β be 0.3500 and 0.9844, respectively. If we set δ = 1 and η = 1
(log utility), [4] shows there exists a closed form solution to 3.14. The proof is reproduced
in detail below:

Analytical Equilibrium solution to the deterministic model:
Let v0 = 0, u(c) = ln(c), F (k) = kα, α ∈ (0, 1) and f(k) = F (k) + (1 − δ)k with δ = 1 .
Recall c = f(k)− k′, and we solve for the one period value function as follows:

v1(k) = max
0≤k′≤f(k)

{u[kα − k′] + βv0(k′)}

v1(k) = α ln(k).

This implies k′ = 0 and v1(k) = α ln(k). For the next step, we get:

v2(k) = max
0≤k′≤f(k)

{u[kα − k′] + βv1(k′)}

= max
0≤k′≤f(k)

{u[kα − k′] + βα ln(k′)}

taking derivative with respect to k′ in v2(k) and setting equal to zero, we obtain:

1
kα − k′

=
αβ

k′
.

Solving for k′ gives

k′ =
αβ

1 + αβ
kα

v2(k) = α(1 + αβ) ln(k) +D1

D1 = ln
(

1
1 + αβ

)
+ αβ ln

(
αβ

1 + αβ

)
.

For v3(k), we get

v3(k) = max
0≤k′≤f(k)

{u[kα − k′] + βv2(k′)}

= max
0≤k′≤f(k)

{u[kα − k′] + β(α(1 + αβ) ln(k′) +D1)}.

Taking derivative with respect to k′, and solving for k′, we get:

k′ =
αβ + (αβ)2

1 + αβ + (αβ)2
kα.
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Continuing in similar manner, we get

k′ =

s−1∑
i=1

(αβ)s

s−1∑
i=0

(αβ)s
kα

and taking limit s→∞, we get
k′ = αβkα. (3.15)

that is

kt+1 = h(kt)
= αβKα

t .

The point h(k) = k is called the stationary solution, steady state or the fixed point of h. In
this example, there is one positive stationary point, k∗ = (αβ)

1
1−α = 0.194, i.e. lim

t→∞
kt → k∗.

The numerical solution7 is computed fairly easily using the following algorithm.

Algorithm 1 (Numerical solution to the deterministic model in example 1 ).

1. Initialize the value function to V0 = 0 ∀i = 1...n where n is the number of grid points8.

2. Compute V s+1 = max
kj
{u(y(ki)− y(kj)) + βV s} for j = 1, ..., n for the sth iteration ∀

grid points. So V s is a vector.

3. Store the grid location, j∗, of k′ in a policy vector, h.

4. Repeat steps 3 and 4 until the norm of two consecutive V ′s is within some ε > 0, our
termination condition.

Figure 3.2 plots kt versus kt+1 using the policy generated by dynamic programming
along with the closed form solution. The point of intersection between the 45◦ line and the
policy curve is the equilibrium point, k∗ ≈ 0.194, as defined in example 1. The running
time for the above implementation in MATLAB on a 2.4 GHz processor is about 19 seconds.
We could further improve on the running time by exploiting the monotonicity of the value
function, i.e. in step 3, once we find the optimal index j∗1 for k1 we only need to consider
capital stocks greater than kj∗1 in the search for the next optimal index j∗2 for k2. It is
important to note that the maximum of the value function need not occur on the grid
points, and to account for this we use linear interpolation throughout this paper.9 In this
deterministic case the solution on and off the grid computed using interpolation is about

7An alternative approach could be that of the Lagrangian: taking derivatives and setting the first order
conditions. Since we are setting a premise to solve higher dimension problem that have only numerical
solutions, we develop the dynamic programming approach and solve all examples using it in this paper.

8A finer grid leads to better approximation, but comes at a cost - longer running time.
9REITER2009 uses cubic spline interpolation.
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Figure 3.2: Capital at time t versus capital at time t+ 1 using the policy function
generated by dynamic programming and the closed form solution.

the same (plot not shown here); however, the error is amplified in subsequent calculations
in later models with a higher order state space.10

For our second model we introduce aggregate shock (crop failures, technological break-
throughs, etc at the national level) to the current model and show the equilibrium shifts
from a point to a limiting distribution.

3.1 A Single Consumer and Producer Aggregate Shock
Economy

This model is also called a stochastic model for optimal growth. The model is the same as
in the last section, but with a minor difference - the farmer’s production of corn is affected
by aggregate uncertainty (crop failure, sudden mutation to seed that causes production
boost, etc). The production function, F (kt, nt), will have a stochastic term, zt, where {zt}
is a sequence of independent and identically distributed random variables. zt > 1, zt = 1,
0 ≤ zt ≤ 1 imply economic boost, no shock, and economic downturn, respectively.
Again we assume labor is supplied maximally and set it to a constant 1 (i.e. nt = 1).
At the beginning of period t the current value zt of the exogenous shock is realized, thus
ztF (kt, 1) is known. The farmer has to decide how much to consume in the current period
ct and how much to save for the next period kt+1.

10This is when two or more arguments are passed into the policy function.
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In period t, the farmer solves the following maximization problem:

max
{ct}∞t=0

E

[ ∞∑
t=0

βtu(ct)

]
(3.16)

⇒ max
{kt+1}∞t=0

E

[ ∞∑
t=0

βtu((1− δ)kt + ztF (kt, 1)− kt+1)

]
(3.17)

using the constraint equation:

ct + kt+1 = (1− δ)kt + ztF (kt, 1)

where u is the CRRA utility defined earlier in 3.10.
The recursive problem11 of 3.16 using the value function in any period is then defined as:

V (k, z) = max
0≤k′≤zF (k,1)+(1−δ)k

u(z(F (k, 1) + (1− δ)k − k′) + βE[V (k′, z′)|z],

where the expectations are conditional on the realization of z. In the case of a Markov
chain with m realizations [z1, ...zm] and with the probability transition matrix Π = [Πij ],
the expectation is given as

E[V (k′, z′)|zi] =
m∑
j=1

ΠijV (k′, zj).

In the case of a continuous valued Markov process with conditional probability function
Π(z, z′) over the interval [c, d], it is

E[V (k′, z′)|z] =
∫ d

c
V (k′, z′)Π(z, z′) dz′.

The optimal capital path for any period is given by k′ = h(k, z) and as in the determin-
istic case we have to first find V . In this model, given k0 > 0 we are looking for a sequence
of random variables12 {kt}∞t=1 that come about from the value function, V . The uniqueness
and existence of V and h is developed in [10]. Unlike the deterministic model (where we
find one equilibrium point for the capital), here we are interested in the limiting distribution
of the sequence of random variables {kt}∞t=1. To show this type of weak convergence, we
consider the following example:

Example 2 (The nature of the closed form solution in a model with aggregate shocks). .
Let δ = 1 and η = 1, so that we have the log utility 13 below:

u(ct) = ln(ct).

Let zt
iid∼ G and assume that kt+1 = h(kt, zt) = αβztk

α
t .

11Notice the state space has now increased in dimension by the addition of aggregate shock with respect
to the previous deterministic model.

12Or equivalently, a sequence of policy functions {ht}∞t=1.
13Using log utility here with δ = 1 yields a closed form solution.

19



www.manaraa.com

Proposition 6 (kt+1 = h(kt, zt) = αβztk
α
t ).

Proof: Reproduced from [4]: Let the one-period utility function u and the production
function with constant labor input (N=1) F, be given by:
u(ct) = ln(ct), F (zt, kt, 1) = ztF (kt, 1) = ztk

α
t , α ∈ (0, 1) and f(kt) = ztF (kt) + (1 − δ)kt

with δ = 1 In the deterministic case, we found that kt+1 was directly proportional to kαt . So
let’s try the policy function as

kt+1 = h(kt, zt) = Aztk
α
t

with the unknown parameter A. We use stochastic equivalent to the following identity (called
the Euler equation):

u′(ct)
u′(ct+1)

− βF ′(kt+1) = 0

and substitute parameters of this model below

1 = βEt

[
(1−A)ztkαt

(1−A)zt+1 [Aztkαt ]α
αzt+1 [Aztkαt ](α−1)

]
=
αβ

A
.

If we set A = αβ, the function h(kt, zt) = αβztk
α
t indeed satisfies the above equation. Thus

it is the policy function we are looking for. Q.E.D.

Given k0 and k1 ∼ Ψ1, we obtain:

Ψ1(a) = Pr{k1 ≤ a} = Pr{αβz0kα0 ≤ a}

= Pr{z0 ≤
a

αβkα0
}

= G

(
a

αβkα0

)
.

For successive periods we can define a transition function

H(a, b) = Pr{kt+1 ≤ a|kt ≤ b} = G

(
a

αβkαt

)
, ∀a, b > 0

Ψt+1 = Pr{kt+1 ≤ a} =
∫
H(a, b) dΨt(b), t = 0, 1, ..

where the distribution Ψ0 is simply a mass point for a given k0. If h and G are some suitable
family then H is such that {kt} converges to a unique limiting distribution satisfying

Ψ(k′) =
∫
H(k′, k) dΨ(k)

where Ψ is called the invariant distribution and gives a probabilistic description of the asset
kt in any period t. It also describes the distribution of asset in periods t + 1, t + 2, ....
Generally we are interested in computing∫

φ(k) dΨ(k) (3.18)
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for some continuous function φ. If we have the analytical form of Ψ, we could use importance
sampling to obtain an estimate of the above integral, 3.18. In our example, since kt+1 =
αβztk

α
t ∀t, ∀{zt} then its logarithm is ln(kt+1) = ln(αβ) + α ln(kt) + ln(zt). Since {zt}

are iid then so are {ln zt}. Let {lnzt}
iid∼ N(µ, σ2). Given k0, {ln(kt)}∞t=1 is a sequence

of normally distributed random variables with means {µt}∞t=1 and variances {σ2
t }∞t=1. The

limiting values of these means and variances can be computed as follows:
Let µt be the mean at time zero of the log of the capital stock in period t. Then,

µt = E0[ln kt]
= E0[ln(αβ) + α ln(kt−1) + ln(zt−1)
= ln(αβ) + µ+ αµt−1

= ln(αβ) + µ+ α[ln(αβ) + µ] + α2µt−1

= [ln(αβ) + µ][1 + α+ ...+ αt−1] + αtµ0

= [ln(αβ) + µ]
[
αt − 1
α− 1

]
+ αtµ0

=
[
µ0 −

ln(αβ) + µ

1− α

]
αt +

ln(αβ) + µ

1− α
where the expectation is conditioned on information at time t = 0.
Since 0 < α < 1, then

lim
t→∞

µt =
ln(αβ) + µ

1− α
.

If we let
µ∗ = lim

t→∞
µt

and with µ = 0, we obtain
eµ
∗

= (αβ)
1

1−α .

which is a similar to the solution, k∗, in example 3. Similarly, define σ2
t as the variance at

time zero of the logarithm of the capital stock in period t. Then

σ2
t = V ar0[ln kt]

= V ar0[ln(αβ) + α ln(kt−1) + ln(zt−1)]
= α2σ2

t−1 + σ2

is an ordinary differential equation with a solution given by

σ2
t =

[
σ2

0 −
σ2

1− σ2

]
α2t +

σ2

1− α2
.

Since 0 < α < 1,

lim
t→∞

σ2
t =

σ2

1− α2
.

Here the invariant distribution function of {ln(kt+1)}∞t=0 is Ψ ∼ N
(

ln(αβ)+µ
1−α , σ2

1−α2

)
. Most

of these models do not have such nice h and G functions and hand calculations are not
possible. In fact only a handful of examples have closed form solutions, and we must have
numerical solutions.
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We will now look at an alternative numerical example.

Example 3 (The nature of the non-analytic solution in a model with aggregate uncer-
tainty). Consider the same farmer’s expected utility maximization problem but with calibra-
tions that only leads to a numerical solution.

max
ct,kt+1

E

[ ∞∑
t=0

βtu(ct)

]
, β ∈ (0, 1)

where

u(ct) =
c1−ηt

1− η
, η > 0

and such that

kt+1 + ct ≤ ztk
α
t + (1− δ)kt, α ∈ (0, 1)

0 ≤ ct,

0 ≤ kt+1

with k0, z0 given and t = 0, 1, .... Assume the Markov chain for the aggregate shock zt has
three states, z = [0.99, 1.00, 1.01] and the transition matrix is given by

Π =

 0.61 0.34 0.05
0.24 0.52 0.24
0.05 0.34 0.61

 .
Choose the parameters α = 0.27, β = 0.984, δ = 0.01, and η = 2 so there is no closed form
solution.

Algorithm 2 (Computation of Equilibria in a Aggregate Shock Economy for example 3 ).

1. Choose14 a grid of n equally spaced points over [kmin, kmax] = [0.1, 1.5].

2. Initialize15 the value function to V 0 = uT (I − βΠ)−1.

3. Compute the new value function by

V s+1
ij = max

kd
u(zjF (ki, 1) + (1− δ)ki − kd) + β

∞∑
t=1

ΠjlV
s
dl

for i, d = 1, ..., n and j = 1, ...,m. Repeat until V converges.

In the light of the previous example and the nature of the closed form solution, we would
expect the equilibrium points to be a function of the limiting probability distribution of the

14The grid should contain the equilibrium points and is chosen by having a-priori knowledge of the problem
or by trial and error.

15This initialization gives us an estimate of the stationary elements of V. In addition, to evaluate u(ct),
set ct = ztk

α
t + (1− δ)kt − kt+1.
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Figure 3.3: Policy function with Equilibria in the Aggregate Shock Economy for
example 3

random variable, z. This would be a discrete probability distribution that should give us an
equivalent number of discrete equilibrium points. In this case, kt converges to three equi-
librium points, i.e. {k∞} ∈ [0.16026, 0.16306, 0.16446]. These points are displayed in the
above Figure 3.3, and as expected these are the points of intersection between the respective
policy curve and the 45◦ line. Please note, since we zoom in to focus on the equilibrium
points which are at the intersection of the policy curves and the 45◦ line, wiggles appear as
an artifact of the grid size. The policy curve should be smooth at least for this example!
The last two examples exemplify that the limiting distribution of aggregate shocks character-
izes the limiting sequence of random variable {kt}∞t=1. We hope to apply a similar reasoning
in the models presented in the next chapter.
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CHAPTER 4

MODEL WITH IDIOSYNCRATIC

UNCERTAINTY

In the previous models, we considered a single farmer (or household) acting as a producer
and consumer. In the next two models, there is a single consumer per household. Con-
sumers, agents and households are used interchangeably from now on. Furthermore, models
will have three sectors: a continuum of households who maximize consumption and sav-
ings, a single firm - owned collectively by these households - that maximizes profits and
will be responsible for production, and a government who redistributes wealth by charg-
ing tax and paying unemployment benefits. This type of model is called a heterogeneous
agent based economy where households differ in wealth and employment status (unlike the
homogeneous agent based economy discussed earlier where a single entity represented the
entire economy’s behavior). The lucky employed ones store wealth and run it down during
periods of unemployment. These models are of prime interest to our work as the solution
is challenging and computationally expensive. We have seen the implications of aggregate
uncertainty from the previous model; in this chapter we want to consider the effect of em-
ployment uncertainty (idiosyncratic uncertainty) on the solution. In the next chapter, we
will consider both uncertainties simultaneously.
We will use uppercase letters to denote aggregate parameters (parameters relating to the
entire economy), and lowercase letters for parameters relating to households. For instance
ct will be a single household consumption for period t, while Ct represents the consumption
of all households collectively (an aggregate variable). There is one exception in the notation:
the individual wealth in period t will be denoted by at and aggregate wealth Kt. This is
because the aggregate wealth is assumed to be held (borrowed) by the firm, and the firm
and households solve distinct maximization problems in each time period.
We present the sectors in the current economy - Households, Government and Firms:

4.1 Households

The agent is faced with uninsurable uncertainty of employment at the beginning of any
period. This introduces heterogeneity at the household level, and is the only source of
randomness in the economy. The household employment state follows a first order Markov
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Chain:

Π(ε′|ε) = Pr{εt+1 = ε′|εt = ε} =
(
puu pue
peu pee

)
, (4.1)

where pue is the probability of being employed in the next period while being unemployed
in the current period.

The Household Problem. At the beginning of any period, the agent learns about
his/her employment status.1 With known (rt, wt) and the wealth at the end of the last pe-
riod, the agent decides on consumption for the current period and savings for the beginning
of the next period.
All households have the same utility (CRRA) function u(c) as in the deterministic case and
face the same problem, so we analyze a single consumer’s decision problem. For the ease of
reference, the CRRA utility function is restated below:

u(c) =

{
c1−η

1−η if 0 < η < 1 & η > 1
ln(c) if η = 1

(4.2)

As before each household maximizes its lifetime utility:

max
{ct}∞t=0

E

[ ∞∑
t=0

βtu(ct)

]
, (4.3)

where β ∈ (0, 1) is the constant discount factor, and expectations are conditioned on the
information at time zero.
The following constraint exists on the households in period t:

at+1 =
{

(1 + (1− τt)rt)at + (1− τt)wt − ct, if ε = e
(1 + (1− τt)rt)at +mt − ct, if ε = u

(4.4)

where at is the end of the t− 1 period household wealth, ct is the consumption in period t,
τt is the income tax rate in period t, rt is the interest rate for period t, and mt and wt are
the unemployment benefits and wages for period t, respectively. The after tax post interest
savings wealth set aside from the previous period is given as (1 + (1 − τt)rt)at. Likewise
the post tax wages employed households earn are given as (1− τt)wt, while the unemployed
agents are endowed with tax-free2 unemployment compensation mt in period t.

4.2 The Firm

There is a single firm owned collectively by all households.3 It is the sole producer in
this economy. The production function is defined as:

F (Kt, Nt) = Kα
t N

1−α
t , α ∈ (0, 1) (4.5)

1In this paper, the employment status is an exogenous variable or randomly ordained. Costain(1997),
Den Haan et al (2000), and Heer (2003) are few studies where the employment status is updated due to the
model friction (or endogenously).

2This is not true for the US unemployment policy i.e. unemployment benefits are taxable.
3If the firms are owned by another entity there would be competitive optimizing as in game theory. The

famous Nash equilibrium introduces a potential solution to multiparty optimality.
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where Kt, and Nt are the aggregate (or total) capital and the total percentage of employed
agents in the economy in period t, respectively. The firms takes the aggregate capital Kt

and labor Nt from the households, produces and pays out interest for the borrowed capital
and wages for labor. It is assumed that the total capital across households is taken by the
firm for production. There is no alternative source of interest income such as a bank.
The firm then maximizes profits with respect to labor and capital. It has to decide on the
amount of (from the households) aggregate capital, Kt+1 to set aside for the next period
t + 1, and aggregate labor Nt to rent for current period t. This optimization is based on
the current interest rate, rt and the wage rate, wt. The firms maximizes profits based on:
Firm’s Decision problem:

max
(Kt+1,Nt)

Yt − rtKt+1 − wtNt, (4.6)

with
Yt = F (Kt, Nt) + (1− δ)Kt

The total resource constraint of any t period is given by:

Ct +Kt+1 ≤ F (Kt, Nt) + (1− δ)Kt. (4.7)

That is:
Total consumption for period t + Total savings for period t+ 1 ≤ Total production for period
t + Depreciated total capital from period t− 1.

The interest rate and the wages for period t are set using the firm’s first order conditions:

rt = ∂
∂Kt

[F (Kt, Nt) + (1− δ)Kt] = α

(
Nt

Kt

)1−α
− δ (4.8)

wt = ∂
∂Nt

[F (Kt, Nt) + (1− δ)Kt] = (1− α)
(
Kt

Nt

)α
(4.9)

where δ ∈ [0, 1] denotes the depreciation rate of capital. Since the households collectively
determine how much capital Kt+1 and labor Nt, the firm’s problem becomes a static one.
Hence our main focus remains on the household decision problem.

4.3 Government

The sole purpose of the government is to redistribute capital. It performs this by
charging tax, τt, and paying unemployment benefits, mt to households. The government
balances its budget in every period, i.e.

Tt = Mt

where Tt is the aggregate (total) tax revenue received and Mt is the total unemployment
benefits paid out to unemployed households in period t. Thus the government decides how
much unemployment benefits, mt, need to be paid out based on the total unemployment
and then determines the tax rate, τt. As with the firm, the government’s problem is also a
static one.
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4.4 In Course to the Stationary Equilibrium

At the start of period t, the households learn about their employment status, the interest
and the wage rates. Since the firm and the government’s problems have implied solutions
through the household optimization, solving the household problem is imperative.

4.4.1 The Household Problem- Restated

The household has to maximize its sequential utility 4.3 which can be restated as the
following recursive4 dynamic programming problem along with the employment transition
matrix 4.1 and subject to household constraint equations 4.4:

V (εt, at) = max
ct,at+1

[u(ct) + βE{V (εt+1, at+1)|εt}] (4.10)

where the period invariant individual state space consists of sets (ε, a) ∈ χ = {e, u} ×
[amin,∞). Note in the above equation, at+1 = at+1(εt, at). The agent has to decide how
much to consume in the current period and how much to save for the next period based on
the current interest and wage rates. The unemployment benefits rate, mt, is set5 such that
households will not substitute unemployment for work. The order in which decisions are
made for each entity is presented in the decision process model diagram Figure 4.1 on the
next page.

4.5 The Stationary Equilibrium

As mentioned before, the only source of randomness comes from employment uncer-
tainty that follows a stochastic matrix, Π. This matrix gives us the invariant probability
distribution of employment and unemployment. With these parameters, we are interested
in computing the wealth distributions of the households where the distribution of assets
and the number of employed and unemployed agents are constant; but, individual agents
are not characterized by constant wealth and employment status.
At stationary equilibrium, the aggregate variables and factor prices are constant and we
drop the time indices and denote next period values using the ‘prime’ notation, ′, as neces-
sary.

Conditions for the stationary equilibrium. For a given set of factor prices (r, w)
and government policy (m, τ), the stationary equilibrium is: a value function V (ε, a) and a
sequence of individual decision rules a′ = a′(ε, a) and c(ε, a) that solves the household op-
timization problem 4.3, and a stationary probability distribution function Γ(ε, a) or equiv-
alently an invariant density function γ(ε, a) for household wealth. In addition to these,
other conditions have to be satisfied. A complete summary of the conditions to be satisfied
simultaneously is given below.

4[10] justifies this sequential to recursive formulation. This justification is similar to the deterministic
one shown in the previous chapter.

5In the literature the ratio of unemployment compensation to net wage income is called the replacement
ratio and is typically set to 25%.
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a) Households are uniformly distributed with measure one. The individual household max-
imizes

V (ε, a) = max
c,a′

[
u(c) + βE{V (ε′, a′}|ε

]
,

s.t.

a′ =
{

(1 + (1− τ)r)a+ (1− τ)w − c, if ε = e
(1 + (1− τ)r)a+m− c, if ε = u

a ≥ amin

Π(ε′|ε) = Pr{εt+1 = ε′|εt = ε} =
(
puu pue
peu pee

)

b) The distribution of (ε, a) is stationary. The aggregate capital K, aggregate consumption
C, and aggregate employment N are constant.

c) Factor prices are equal to their respective marginal products:

r = α

(
N

K

)1−α
− δ

w = (1− α)
(
K

N

)α
.

d) The government budget balances: M = T .

e) The aggregate consistency conditions hold:

K =
∑

ε∈{e,u}

∫ ∞
amin

a γ(ε, a) da,

N =
∫ ∞
amin

γ(ε = e, a) da,

C =
∑

ε∈{e,u}

∫ ∞
amin

c(ε, a) γ(ε, a) da,

T = τ(wN + rK),
M = (1−N)m,

and finally,

f) The goods market clears:

C +K ′ = F (K,N) + (1− δ)K.

Recall that K and N are the aggregate capital and employment, respectively, C is
the aggregate consumption for the household, and T and M are the aggregate tax
received and unemployment benefits paid out by the government, respectively.
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The following algorithm describes a general approach to solve the household problem.

Algorithm 3. : A general algorithm to compute the Stationary Equilibrium

Step 1: Compute the stationary employment N using normalized eigenvectors6 or an alterna-
tive technique.

Step 2: Make initial guesses of the aggregate capital stock K and the tax rate τ .

Step 3: Compute the wage rate w and the interest rate r.

Step 4: Compute the household’s decision rules, {at+1}∞t=0.

Step 5: Compute the invariant density7 of assets for the employed and unemployed agents.

Step 6: Compute the capital stock K and taxes T that solve the aggregate consistency condi-
tions.

Step 7: Compute the tax rate τ that solves the government budget.

Step 8: Update K and τ and return to step 3 if necessary.

Since we are familiar with the computation of the value function, we focus on step 5 -
computing the invariant density below. The main idea in all these techniques is to set a grid
on household assets, and compute all optimal transitions for each grid point to determine
the household policy.

4.6 Existing Algorithms to Compute the Stationary Density

Four standard techniques discussed in [4] are given here.

Method 1: Computation of the Stationary Distribution Function, Γ(ε, a) by discretization of the
distribution function.

Method 2: Computation of the Stationary Density Function, γ(ε, a) by discretization of the den-
sity function.

Method 3: Computation of the Stationary Distribution Function Γ(ε, a) by Monte Carlo Simula-
tion.

Method 4: Computation of the Stationary Distribution Function Γ(ε, a) by Functional Approxi-
mation.

Algorithm 4 (Method 1: Computation of the stationary distribution by discretization).

Step 1 : Place a grid on the asset space A = {a1 = amin, a2, ..., am = amax} such that the
grid is finer than the one used to compute the optimal decision rules a′

6Since Π is a markov matrix, we normalize the eigenvector associated with eigenvalue of 1 to get the
employment probability density.

7Alternatively, you could compute the invariant cumulative distribution function.
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Step 2 : Choose an initial piecewise distribution function Γ0(e, a) and Γ0(u, a) over the grid.
Each will have m rows.

Step 3 : Compute the inverse of the decision rule a′(ε, a)

Step 4 : Iterate on

Γi+1(ε′, a′) =
∑
ε=e,u

π(ε′, ε)Γi
(
a
′−1(ε, a′), ε

)
on the grid points (ε′, a′)

Step 5 : Iterate until Γ converges

Brief Description:

Step 1: This step is required for all algorithms. The choice of grid size depends on the cali-
bration of parameters. A rough estimate would be to set a wide interval centered at
the aggregate capital stock, K, of the representative agent economy (where there is
no uncertainty). If during the first few runs a large proportion of households have
wealth at the the end points of the grid, then increase the grid size. Thus setting the
grid size requires a lot of trial and error. In our technique, we will overcome this by
taking a very wide grid and using the bisection method. This technique is robust and
does not require frequent updates on the grid.

Step 2: Unfortunately [4] reports that the choice of the initial distribution function and the
number of simulations influence the convergence of this algorithm for the example
they use. That is, if the distribution is initialized to

Γ0(ε, a) =
a− amin

amax − amin
,

instead of

Γ0(ε, a) =
{

1, if a ≥ K
0, if else

the algorithm fails. Alternatively, if the number of simulations over the distribution
are increased from {500, 1000, 1500, ..., 25000} to {2500, 5000, ...., 125000}, the algo-
rithm fails. This was a little alarming as it shows the fragility of this algorithm. In
principle, the initial distribution should not influence convergence. This is because
the stationary density should be independent of the starting states. The number of
simulations should be sufficiently large at every step to guarantee convergence to the
stationary distribution. We address these concerns and cite the source of failure - the
termination condition and the update rule on the aggregate capital stock, K. These
are not mentioned in the algorithm, but were found in the actual gauss programs
provided by [4]. In the program, initial interest and wage rates are updated using K.
And K is updated as follows:

Knext = ψKprevious + (1− ψ)Kcomputed (4.11)
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where

Kcomputed =
∑

ε∈{e,u}

∫ ∞
amin

aγ(ε, a) da

≈
∑
ε

 m∑
j=2

(Γ(ε, aj)− Γ(ε, aj−1))
aj + aj−1

2
+ Γ(ε, a1)a1

 .

ψ is what I call a parameter that defines the rate of convergence of K. The value
chosen for ψ was 0.95. The choice of this parameter is the root of failure. We explain
this by setting a grid on Kin and determining Kout. Figure 4.3 shows a nearly vertical
relationship that would be very sensitive to convergence, and failures are imperative
using the update equations above.

Step 3: The inverse of the policy, a′(ε, a), where a = a′−1(ε, aj), j = 1, ...,m is computed
over the chosen grid. Linear interpolation is used for the computation of a′(ε, a)
for aj < a < aj+1, and again to find the inverse. [5] establishes that a′ is strictly
nondecreasing in a.

Step 4: The distribution function is updated in a straight forward manner.

Algorithm 5 (Method 2: Computation of the stationary density function by discretiza-
tion).

Step 1: Place a grid on the asset space A = {a1 = amin, a2, ..., am = amax} such that the grid
is finer than the one used to compute the optimal decision rules following [9].

Step 2: Set i = 0. Choose initial discrete density functions γ0(ε = e, a) and γ0(ε = u, a) over
that grid. The two vectors have m rows each, where m is the size of the finer grid set
in the last step.

Step 3: Set γi+1(ε, a) = 0 for all ε and a. i) For every a ∈ A, ε ∈ {e, u}, compute the optimal
next-period wealth aj−1 ≤ a′ = a′(ε, a) and ii) for all a′ ∈ A and ε′ ∈ {e, u} the
following sums:

γi+1(ε′, aj−1) =
∑
ε=e,u

∑
a∈A

aj−1≤a′(ε,a)<aj

Π(ε′|ε) aj − a′

aj − aj−1
γi(ε, a),

γi+1(ε′, aj) =
∑
ε=e,u

∑
a∈A

aj−1≤a′(ε,a)<aj

Π(ε′|ε) a
′ − aj−1

aj − aj−1
γi(ε, a).

Step 4: Iterate until γ converges.

Brief Description: The steps are essentially the same as in algorithm 4 except the
density function is now updated. If the optimal next period capital stock a′ is ∈ (aj−1, aj),
we set

a′new =

{
aj wp a′−aj−1

aj−aj−1

aj−1 wp 1− a′−aj−1

aj−aj−1

32



www.manaraa.com

The reason why aj−1 < a′ < aj is because the density grid is finer than the grid on which the
optimal policy is computed using dynamic programming. Overall this algorithm is slightly
faster with respect to algorithm 4 as we are not computing the inverse of the policy, a′(ε, a).

Algorithm 6 (Computation of the Stationary Distribution Function Γ(ε, a) by Monte Carlo
Simulation).

Step 1: Choose a large sample of households, N (= 1000)

Step 2: Initialize the sample. Each household i = 1, ..., N is assigned an initial wealth ai0 and
employment status εi0

Step 3: Compute the next period wealth level a′(εi, ai) ∀ i = 1, ..., N

Step 4: Use a random number generator to obtain ε′i ∀ i = 1, ..., N

Step 5: Compute a set of statistics - mean and standard deviation - from this sample

Step 6: Iterate until the distributional statistics converge

Algorithm 7 (Computation of the stationary distribution using Functional Approxima-
tion).

Step 1: : Choose initial moments µ∗ and (σε)2 for the wealth distribution ε ∈ {u, e} and
compute the corresponding parameters ρε of the exponential distribution

Step 2: : Compute the moments of the next-period wealth distribution for the employed and
unemployed agents; if ε = e,

µε
′

= π(e|e)ρe0
∫ amax

−∞
max(a′(e, a), amin)eρ

e
1a+ρ

e
2a

2
da

+ π(e|u)ρu0

∫ amax

−∞
max(a′(u, a), amin)eρ

u
1a+ρ

u
2a

2
da

(σε
′
)2 = π(e|e)ρe0

∫ amax

−∞
(max(a′(e, a), amin)− µe)2eρe1a+ρe2a2

da

+ π(e|u)ρu0

∫ amax

−∞
(max(a′(u, a), amin)− µu)2eρ

u
1a+ρ

u
2a

2
da

Step 3 : Iterate until the moments µε and σε converge

Example 4. Let the agent utility function be given by

u(ct) =
c1−ηt

1− η
, η > 0

with η = 2.0

Π(ε′|ε) =
(

0.500 0.500
0.0435 0.9565

)
. (4.12)

33



www.manaraa.com

The firm’s production function as described in 4.5 with α = 0.36, i.e.

F (Kt, Nt) = K0.36
t N1−0.36

t .

Let the individual discounting factor, β, and capital depreciation rate, δ, be 0.995 and 1,
respectively.

The stationary density plots using all four algorithms in 4.6 are given in Figure 4.2.

Figure 4.2: Stationary density plots from [4]

Table 4.1: Running Time Analysis for Algorithms by [4]

Stat. Dist. Stat. Dens. Monte Carlo Func Approx
Mean 243.7 243.7 243.4 246.6
Running Time (hrs.) 28.25 20.16 75.51 19.05

For example 4, the programs were coded in GAUSS and run on a Pentium III with
846 MHz. As expected, the plots using the first two algorithms - Density and Distribution
Functions - overlap each other. The Monte Carlo method could produce a smoother density
if the number of households is increased. The number of households for this run was 1000.
If a larger number of households are used say 5000 or 10000, the running time increases to
days. Also note in table 4.6, Monte Carlo simulation takes the longest time to converge. For
the Functional Approximation method, the stationary density is more symmetric and has
a smaller variance compared to the other algorithms. For this reason, [4] cites skepticism
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in using this technique. The next best technique in terms of running time is Method 2 -
discretization of density function - that takes 20.16 hours. We will compare our method
directly to this algorithm is running time and convergence.

4.6.1 Our method

Algorithm 8. : A general algorithm to compute the Stationary Equilibrium using
a grid on aggregate capital stock

Step 1: Set a grid on the aggregate capital stock, KGrid.

Step 2: Compute the stationary employment N using normalized eigenvectors8 or an alterna-
tive technique.

Step 3: For each aggregate capital stock value in KGrid, call this Kin, compute the following:

Step 3a: Compute the wage rate w tax rate τ , and the interest rate r.

Step 3b: Compute the household’s decision rules, {at+1}∞t=0, using dynamic programming (value
function)

Step 3c: Compute the invariant density of assets for the employed and unemployed agents using
the Perron-Frobenius Theorem.

Step 3d: Compute the mean of the above density. Call this aggregate capital stock Kcomputed.

Step 3e: Compute other aggregate consistency parameters: T , K, C, and M .

Step 3f: Compute the tax rate τ that solves the government budget.

Step 4: Stop if |Kin −Kcomputed| < ε

We set a coarse grid on the aggregate capital stock and look for the value of Kcomputed

that is approximately same as Kin value. At equilibrium these two values should be the
same. Among the four methods to compute the stationary density discussed above, the
algorithm that discretizes the stationary density seems fastest9. If this method is used
to compute the density for each value of the aggregate grid, the running time would be
days because we would have to run large number of iterations get stationary density. To
overcome this, we require a technique that is relatively fast in computing the stationary
density for each Kin value. We propose using the Perron-Frobenius Theorem.

Theorem 4 (Peron-Frobenius Theorem). If Πn >> 0 for some non-negative integer n,
then ∃ an X >> 0 such that XΠ = X, and if λ is any other eigenvalue of Π, then |λ| < 1

Although the condition required in the Peron-Frobenius theorem is easy to state, it is
difficult to establish for a given Π. To satisfy this condition, we use the following theorem.

8Since Π is a markov matrix, we normalize the eigenvector associated with eigenvalue of 1 to get the
employment probability density.

9Note that the author lures to skepticism in using the functional approximation which is faster than the
discretization method.
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Theorem 5. An irreducible, aperiodic, homogeneous Markov Chain on a finite state space
has the property, Πn >> 0 for some n > 0. Furthermore, this Markov chain has a unique
probability distribution P such that PΠ = P .

Once a Markov matrix satisfying the properties of Theorem 5 is found, the stationary
probability can be obtained by normalizing X into a probability vector, P . We construct a
2 ∗ aGrid× 2 ∗ aGrid a− a′ individual policy transition matrix A from the optimal policy
derived using the value function iteration. The transition matrix ∈ R2m × R2m for (a, ε) is
constructed as follows:

P (at+1, εt+1|(at, εt)) = P (at+1|εt+1, (at, εt))P (εt+1|(at, εt))
at+1 is independent of εt+1

= P (at+1|(at, εt))P (εt+1|(at, εt))
= P (at+1|(at, εt))Π(εt+1|εt).

The matrix P (at+1|(at, εt)) on the last line is the result of the value function iteration. The
second matrix Π(εt+1|εt) is set up such that the long term employment and unemployment
match country specific economies. As mentioned before, this aGrid on which the density
is computed is finer than the one used to compute the optimal decision rules following [9].
One way to set up the matrix A is as follows: if a′ computed from the value function is
between aj and aj−1 on the finer grid, we set the new a′ to be aj with probability a′−aj−1

aj−aj−1

and aj−1 with probability 1 − a′−aj−1

aj−aj−1
. The matrix A is sparse in nature.10 To satisfy the

irreducible and aperiodic conditions given in Theorem 5, we perturb the matrix by adding
a constant ε to all zero entries. The value of ε will influence the eigenvectors if the entries
prior to perturbation are small. To resolve this, we set ε = minimum(A)

2∗length(aGrid) . To guarantee
reproducibility of results, we recommend ε be a constant value rather than a function of
minimum(A). For the examples in this paper ε = 10(−10) works well. Needless to say this
constant is smaller than minimum(A)

2∗length(aGrid) . Once we replace the zero entries of the matrix with ε,
we simply use eigen-analysis to find the unique eigenvector corresponding to the eigenvalue
equal to 1. The existence such a vector is guaranteed by theorem 4. We normalize this
eigenvector to obtain the unique probability density mentioned in 5.

Comparative Analysis of Methods. We solve the model given in example 4 using
our method described in algorithm 8. Figure 4.3 below plots the Kin ∈ kGrid and Kout

values. Note the slope of the curve is almost undefined. This explains the failures in
algorithm 4 and 5. The update function 4.11 would only work if Knext chosen using ψ is
very close to the K∗ value in our plot. Their choice of ψ is a long process of trial and
error, and the value chosen will not be uniform across all examples. Figure 4.4 is a close
up view of the plot to approximate K∗. The point of intersection between the 45◦ line
and the curve is the equilibrium aggregate stock value, K∗, approximately 242.54. This
K∗ is close but not the same as reported in table 4.6. As expected, if we use the K∗ as
the input value reported in table 4.6, we do not get it back in Kcomputed using algorithms
in [4]. One possible source of this error in algorithm 5 (or 4) is that the value function

10[12] uses a similar matrix and maps the normalized eigenvector to a point in the probability function
space using a min-max operator.
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Figure 4.3: Aggregate Capital Stock at Equilibrium Using a Grid Search

Figure 4.4: Aggregate Capital Stock at Equilibrium Using a Grid Search - zoomed
about K∗ 37
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or the dynamic programming layer is not run long enough. In our method, we use 1000
iterations. In programs implementing algorithm 5 (or 4) the value function is iterated only
100 times. In partial justification, [4] continues to update the value function over time. That
is, with each Knext value in 4.11, they update (r, w), government policy (τ,m), and the last
value function becomes the initial value on this run with new calibration parameters. It is
important to note that this adds error. That is, this convergence is only reproduced if we
follow the same sequence of Knext values and rerun the program. And the program does
not return Kconverged = 243.6 in one run. If Kconverged is a value at equilibrium, it should
be unchanged. In our case for each Kin ∈ kGrid, we reinitialize the value function with a
zero vector and run 11 for 1000 iterations or until V iteration+1 − V iteration is small.12

Analysis of our results. For results in Figure 4.3, we present the following expla-
nation. If Kin is too small then r (the interest rate) is too large which encourages agents
to save and invest more so that the policy functions produce large household assets/wealth
with density mean becoming large. Thus too little capital in the economy encourages more
investment leading to more capital in the next iteration. Similarly, too much capital leads
to less investment and smaller capital stocks in the next iteration. We think the intersection
point with the 45 degree line in figure 4.4 needs to have slope less than 1 in absolute value
for gradient algorithms like 4 and 5 to be stable. We can exploit the above relationship
between r and Kin (and Kcomputed) to our advantage and use a faster algorithm inspired
by the bisection or binary search method.

Algorithm 9. : A general algorithm to compute the Stationary Equilibrium using
a binary search on aggregate capital stock grid

Step 1: Choose a wide interval for the aggregate capital stock (Kmin,Kmax). You can choose
the same or slightly smaller interval than the household asset grid. We know from the
above analysis that Kcomputed > Kmin and Kcomputed < Kmax.

Step 2: Let Kmaxnew = (Kmin +Kmax)/2

Step 3: Follow steps 2 − 3f in algorithm 8 to compute the stationary density and Kcomputed

value for the input, Kmaxnew

Step 4: if (Kmaxnew > Kcomputed), set Kmax = Kmaxnew ; else Kmin = Kmaxnew

Step 5: if(‖Kmax −Kmin‖ < constant), stop.

In step 1, we use an interval of (50, 2900). This interval is comparable to the individual
asset grid interval of (0, 3000). In step 4, the statement (Kmaxnew > Kcomputed) implies that
K∗ is to the left of Kmaxnew , and Kmax is updated. Likewise (Kmaxnew > Kcomputed), implies
that K∗ is to the right of Kmaxnew and Kmin is updated. In step 5, we choose the value of
the constant to be 0.001. This choice is made to make the results comparable with K∗ using
the grid technique earlier. If no prior information is at hand, a more accurate choice can be
made. The converged K∗ value using this algorithm is in the interval (242.5303, 242.5330).

11There is no justification for this number, but we have found that this is sufficient for the examples in
this paper. The ideal number of runs is an open problem.

12We use convergence in norm
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Figure 4.5: Density Comparison Using Algorithms 5 and 9

Figure 4.5 compares two plots - plot of the density our binary search method, and a plot
using the code provided in GAUSS by [4]. For our method if we use K∗ = 242.5330 (that
upper limit value of the converged interval), we get Kcomputed = 242.2606 as the mean of
the density. The absolute relative error is 0.1123%. In GAUSS using algorithm 5, we get an
absolute relative error of 4.9% with K∗ = 243.7 and Kcomputed = 255.65 as the mean of the
density. Please also note that both densities can be thought of as piecewise or conditional
on the employment status so that the sum of the areas under both curve adds to 1.

Table 4.2: Running Time Analysis

Algorithm 9 (our method) Algorithm 5
Running Time (hrs.) 2.35 3.49

The binary search algorithm 9 is run to produce the same precision as in algorithm 5 (i.e.
within 0.1) to make a valid comparison. Both algorithms were run on a Intel (R) 2 Duo CPU
T8300 2.40 GHz notebook. The initial interval in step 1 of algorithm 9 is relatively coarse
(200, 300) and is chosen to contain the aggregate capital stock of the representative13 agent
economy, 247.6. For every choice of Kmaxnew ∈ (Kmin,Kmax), we restart the value function
with a zero vector and run until there is convergence. The running time of our binary
search algorithm is smaller compared to algorithm 5. This is due to the enormous time
saved by computing the stationary density using eigen-analysis and the Perron-Frobenius
Theorem. Please note that the running time will increase if we choose a wider initial interval
and aim for higher precision. Thus the running time of the wider initial interval, (50, 2900),

13An economy with the same calibration but no shocks.

39



www.manaraa.com

described earlier was 4.87 hours. The higher running time is attributed to the three decimal
precision used as a stopping criteria in step 5 of algorithm 9. This wider initial interval
does not require any prior information, especially - the aggregate capital stock value of the
representative agent economy - as needed in algorithms described by [4] .

4.7 Time Iterative Technique

The algorithms discussed above are called fixed point techniques because they focus
on finding the stationary point. We will now discuss the time iterative technique method.
Here we want to compute the non-stationary state of an economy. We reconsider Example
4 with one important difference: the economy is not in stationary equilibrium. Recall
that the households are allocated uniformly along an interval and are of measure one. For
convenience of notation the time subscripts are dropped. The individual household now
maximizes

V (ε, a, γ) = max
c,a′

[
u(c) + βE{V (ε′, a′, γ′}|ε

]
, (4.13)

s.t. (4.14)

a′ =
{

(1 + (1− τ)r)a+ (1− τ)w − c, if ε = e
(1 + (1− τ)r)a+m− c, if ε = u

(4.15)

a ≥ amin (4.16)

Π(ε′|ε) = Pr{εt+1 = ε′|εt = ε} =
(
puu pue
peu pee

)
(4.17)

The distribution of γ(ε, a) is described by the following dynamics:

γ′(ε′, a′) =
∑
ε=e,u

π(ε′, ε)γ
(
ε, a

′−1(ε, a′, γ)
)

(4.18)

Note the increase in the individual state space by the infinite dimensional parameter γ. At
each time instant, the households have to estimate γ′. They use this density parameter to
predict the next period interest rates. These prices are equal to their respective marginal
products:

r = α

(
N

K

)1−α
− δ (4.19)

w = (1− α)
(
K

N

)α
. (4.20)
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The aggregate consistency conditions hold:

K =
∑

ε∈{e,u}

∫ ∞
amin

a γ(ε, a) da,

N =
∫ ∞
amin

γ(ε = e, a) da,

C =
∑

ε∈{e,u}

∫ ∞
amin

c(ε, a) γ(ε, a) da,

T = τ(wN + rK),

M =
∫ ∞

0
mγ(ε, a) da.

Note that the aggregate variables K (aggregate wealth), N (aggregate employment), C (ag-
gregate consumption), T (total tax) and M (total unemployment benefits) are not constant
and vary over time. There is no stationary equilibrium in this set up. However, a sequential
competitive equilibrium exists such that:

1. Given prices (r, w), (a′, c′) solves problem 4.13 for all t ≥ 0.

2. Given prices (r, w), the firm maximizes profits so that 4.19 is satisfied for all t ≥ 0.

3. For all t ≥ 0, the labor market clears

N =
∫ ∞
amin

γ(ε = e, a) da,

and the goods market clears

C +K ′ = F (K,N) + (1− δ)K.

If we are able to find a fixed point such that K = K ′, N = N ′, etc, we would have
stationary equilibrium. To solve this example using the current set up, we follow Krusell
and Smith [7]. They argue that the households need γ′ to approximate the next period
interest rates. But the households only use the first moment, K ′, in approximating this
value. In a way, the households only use partial information. They assume a law of motion
HK for the aggregate capital inspired by the derivation 3.15 in example 1.

lnK ′ = β0 + β1 lnK. (4.21)

Algorithm 10. : Solving the economy given in example 4 using the Krusell and
Smith method

Step 1: Choose the initial distribution of assets γ0 with mean K0.

Step 2: Solve the consumer’s optimization problem and compute V (ε, a,K).

Step 3: Simulate the dynamics of the distribution, Γ.

41



www.manaraa.com

Step 4: Use the time path for the distribution to estimate the law of motion for the moments
K.

Step 5: Iterate until the parameters of HK converge.

Step 6: Test the goodness of fit for HK . If the fit is satisfactory, stop, otherwise increase I or
choose a differential functional form for HK .

The functional form for 4.22 after the goodness of fit test was determined to be:

lnK ′ = 0.041910 + 0.992388 lnK. (4.22)

This equation implies a stationary capital stock equal to K∗ = e
0.041910

1−0.992388 = 246.1 found by
setting K ′ = K. The constant aggregate capital stock K∗ along with a stationary density
γ coming from the dynamics given in equation 4.18, and aggregate stationary employment
N coming from the employment unemployment matrix given in 4.12 implies a stationary
equilibrium. The value of K∗ = 246.1 can be compared to the rest in table 4.6. Please note
that based on figure 4.3, this value implies a lot of error.

Discussion. Krusell and Smith’s time-iterative method [7] discussed above and the
fixed point methods given by algorithms 4.6, 8 and 9 all give an approximate solution to
example 4. Krusell and Smith’s algorithm focuses on the non-stationary transition dynam-
ics while we focus on the stationary equilibrium. The idea is to be at some equilibrium
point, change a specific parameter (say tax rate), and then assess the path to reach the
next equilibrium. [4] shows how to use transition dynamics to go from a non-stationary
initial distribution to a stationary one. We are focusing on the parameters and analysis at
stationary equilibrium only. We want to point out that computing stationary equilibrium
from transition dynamics leads to errors - at least in the present case where we assume a
functional form on aggregate capital (see equation 4.22). This is the reason why we em-
phasize the methods used in algorithms 8 and 9 which are accurate and robust. Of course
there is a trade-off between accuracy and running time. Though our algorithms may not
be appropriate for all economies, they inch us forward in the right direction.

42



www.manaraa.com

CHAPTER 5

DYNAMICS OF A HETEROGENEOUS AGENT

ECONOMY - MODEL WITH AGGREGATE

AND IDIOSYNCRATIC UNCERTAINTY

As in the last chapter, three sectors exist in this economy: a continuum of households
who maximize consumption and savings, a single firm - owned collectively by these house-
holds - that maximizes profits and is responsible for production, and a government who
redistributes wealth by charging tax and paying unemployment benefits. In addition, this
model includes aggregate (technological) and idiosyncratic (employment) uncertainty. Ag-
gregate uncertainty with two realizations in relation to real economies could be interpreted
as periods of growth and recession.

In literature, the aggregate shock zt typically follows an AR(1) process. If this is the
case, this random process can be discretized in the following manner:
Markov Chain Approximation of AR(1) Process as given in [4]:
Consider the process:

zt+1 = ρzt + εt, (5.1)

where εt ∼ N(0, σ2
ε ). The unconditional mean and variance of the process are 0 and σ2

z =
σ2
ε

1−ρ2 . [16] proposes to choose a uniform grid Z = [z1, ..., zm] whose upper endpoint is a
multiple c (> 0) of the unconditional standard deviation, zm = cσz, and the lower endpoint
is z1 = −zm. For a given realization zi ∈ Z, the variable z := ρzi+ ε is normally distributed
with mean ρzi and variance σ2. Let dz be the midpoint between two consecutive grid points,
then

Pr(zj − dz ≤ z ≤ zj + dz) = Π(zj + dz)−Π(zj − dz),

where Π(·) denotes the cumulative distribution function of the normal distribution with
mean ρzi and variance σ2. Thus the post standardization probability to switch from the
state zi to zj is pij = Φ( zj−ρzi+dzσε

)−Φ( zj−ρzi−dzσε
), where Φ(·) denotes the standard normal

distribution.
Let us assume that in the present model, the economy faces two aggregate shocks -

good g and a bad b, and two idiosyncratic shocks - employment and unemployment. At the
beginning of period t the aggregate (technology) shock zt and the idiosyncratic shock εt are
realized. The joint process of the two shocks, zt and εt, can be written as a Markov process
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with a 4× 4 transition matrix Π(zt+1, εt+1|zt, εt). The transition matrix is defined as:

Π(z′, ε′|z, ε) = Pr{zt+1 = z′, εt+1 = ε′|zt = z, εt = ε} (5.2)

=


pzgezge pzgezgu pzgezbe pzgezbu
pzguzge pzguzgu pzguzbe pzguzbu
pzbezge pzbezgu pzbezbe pzbezbu
pzbuzge pzbuzgu pzbuzbe pzbuzbu

 (5.3)

The entry, pzguzge , for example, denotes the probability of transiting from state zgu (unem-
ployment state in a good economy) to the state zge (employment state in a good economy).
We assume the households know the law of motion of both εt and zt. With aggregate shock,
the firm’s production levels are influenced - there is higher production in good times and
vice versa. Likewise the employment status of the current period affects household savings
and consumption. As usual, the firm is interested in maximizing profits and the households
are focused on maximizing lifetime utility. And since the firm is owned by households collec-
tively, its problem remains static. As in previous models, we focus on solving the household
problem.

5.1 The Household’s Problem

There is a continuum of households distributed on an interval with measure one. The
individual household maximizes its utility:

max
{ct}∞t=0

E

[ ∞∑
t=0

βtu(ct)

]
. (5.4)

We assume that this optimization problem can be represented1 as a dynamic programming
problem. [PMB: The mbox steps on the equation number in eq 5.5. You will have to use
“multline” to get an equation line break.]

V (εt, at, zt, γt) = max
c,a′

[u(ct) + βE{V (εt+1, at+1, zt+1, γt+1}|εt, zt, γt] , with constraints(5.5)

at+1 =
{

(1 + (1− τt)rt)at + (1− τt)wt − ct, if εt = e
(1 + (1− τt)rt)at +mt − ct, if εt = u

(5.6)

at ≥ amin (5.7)

u(ct) = c1−ηt
1−η , η > 0 (5.8)

where τt, mt, rt, wt, at, ct are government tax rate, unemployment policy, interest and wage
rate, individual wealth and consumption, respectively for period t. We note the increase in
the state space of the value function V in equation 5.5 above in comparison to the value
function equation 4.10 of the previous model. Two parameters are added - the aggregate
shock argument zt and the wealth distribution γt. An individual household is unable to

1Not all variants of the lifetime utility optimization problem may be represented as a dynamic program-
ming problem. For the problems that can be represented, existence and uniqueness of the value function has
to be justified. The present paper consists of elementary models from [4] which cites [10] for this justification.
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infer the value of the next-period aggregate capital stock Kt+1 to predict rt+1 from its
own decision. It needs to know how all the other (infinitely-numbered) households in the
economy decide and how they save via γt in order to compute Kt+1 and hence, rt+1. Since
γt is a continuous function, approximating this infinite dimensional parameter in every
iteration makes this problem not just difficult but daunting!

5.2 The Firm’s Problem

There is a single firm owned collectively by households. Production is expressed in
analytical form using the Cobbs-Douglas production function:

F (Kt, Nt) = DztK
α
t N

1−α
t , α ∈ (0, 1), (5.9)

where D is constant, zt, Kt, and Nt are the aggregate shock, capital and labor, respectively.
Define output as:

Yt ≡ F (Kt, Nt) + (1− δ)Kt

Given the interest rate, rt and the wage rate, wt, the firm has to decide on the optimal
amount of aggregate capital, Kt+1 and labor, Nt to maximize profit:
Firm’s problem:

max
(Kt+1,Nt)

Yt − rtKt+1 − wtNt, (5.10)

The interest and wage rates are set by taking partial derivatives:

rt =
∂Yt
∂Kt

(5.11)

= αzt

(
Nt

Kt

)1−α
− δ (5.12)

wt =
∂Yt
∂Nt

(5.13)

= (1− α)zt

(
Nt

Kt

)α
, (5.14)

where δ ∈ [0, 1] is the rate at which capital depreciates.

5.3 The Government’s Problem

The role of the government is to redistribute capital by charging an income tax and
giving out unemployment compensation. The government has to balance its budget using
the condition:

Tt = Mt.

The government policy is characterized by a constant replacement ratio ζ = mt/(1− τt)wt.
So mt has to be adjusted based on the wage rate wt.
Figure 5.1 summarizes each sector’s decision process using a model diagram. The demand
d and supply s superscripts on aggregate capital stock and labor are not mentioned in
algorithms or model definitions as we only use the converged variables (i.e. Kd

t = Ks
t ≡ Kt,

etc).
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Figure 5.1: Decision process and arguments of each entity in a economy with
aggregate and idionsyncratic uncertainty.
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5.4 The Competitive Equilibrium

There is no stationary equilibrium in the current setup. A sequential competitive equi-
librium consists of admissible allocation (εt, at)t≥0 for all households and price processes
(wt, rt)t≥0 such that:

1. Given prices (wt, rt)t≥0, (at+1, ct)t≥0 solves the household optimization problem 5.4.

2. Given prices (wt, rt)t≥0, the firm maximizes its profits given in equation 5.10.

3. The labor market clears

Nt =
∫
a
γt(εt = e, at; zt,Kt)da,

and the goods market clears, ∀t ≥ 0

Ct +Kt+1 = ztF (Kt, Nt) + (1− δ)Kt.

An aggregate distribution or density (considered here) is defined over the individual states
across the households. An individual state space consists of sets (ε, a, z) ∈ χ = {e, u} ×
[amin,∞)×{g, b}. The distribution of the individual states (εt, at) for given aggregate state
variables (zt,Kt) in period t is denoted by γt(εt, at; zt,Kt). The agent has to determine
Kt+1 through the non-stationary aggregate density, γt(εt, at; zt,Kt) to approximate rt+1

and wt+1. The dynamics of the distribution of the individual states are described by the
following equations:

γt+1(εt+1, at+1; zt+1,Kt+1) =
∑
ε

Π(zt+1, εt+1|zt, εt)γt(εt, at; zt,Kt), (5.15)

where at+1 = at+1(εt, at; zt,Kt), and

Kt+1 =
∑
ε

∫
a
at+1 γt(εt, at; zt,Kt) da.

The shocks (z, ε) follow a Markov structure, Π(z′, ε′|z, ε), with transition matrix given in
5.2.
The aggregate variables are written as an expectation with respect to the aggregate distri-
bution:

Kt =
∑
ε

∫
a
at γt(εt, at; zt,Kt) da,

Nt =
∫
a
γt(εt = e, at; zt,Kt) da,

Ct =
∑
ε

∫
a
ct(εt, at; zt,Kt)γt(εt, at; zt,Kt) da,

Tt = τt(wtNt + rtKt),

Mt =
∫
a
mtγt(εt = u, at; zt,Kt) da.
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5.5 Discussion

Due to the presence of aggregate uncertainty and idiosyncratic uncertainty, there are
three major changes in this model:

1. We have fluctuating employment levels.

2. The goal of the households in every period is to predict factor prices, i.e. next period
interest rate, rt+1. To do this, they need to estimate, Kt+1 from γt. What if the agents
use only partial information such as the first moment (aggregate capital) instead of
the entire density? That is, what if the agents assume the law of motion for the state
variable, Kt inspired by 6, particularly:

lnKt+1 =
{
ξ0g + ξ1g lnKt if z = zg
ξ0b + ξ1b lnKt if z = zb

,

Then the goal of the agent becomes to estimate parameters: ξ0g, ξ1g, ξ0b, and ξ1b.
This type of approach is standard [4], [7] and others have used it as well. The goal is
to assume an analytic form on the evolution of the aggregate capital stock, Kt. The
parameters of this analytic equation are updated and estimated in every iteration. A
positive goodness of fit test terminates this process. If the fit is mediocre, then an
alternate analytic form involving higher moments of the wealth distribution is used.
In general, agents can characterize the wealth distribution function: Γt(·) by say I
statistics q = (q1, ..., qI). In this case, the value function is restated as

V (εt, at, zt, qt) = max
ct,at+1

[
c1−ηt

1− η
+ βE{V (εt+1, at+1, zt+1, qt+1|εt, zt, qt}

]
where

q = HI(q, z). (5.16)

The following algorithm computes the dynamics in the heterogenous-agent economy
with aggregate and idiosyncratic uncertainty using the approach given in [7].

Algorithm 11 (Computation of Competitive Equilibrium).

1. Compute aggregate next period employment N as a function of current productivity
z : N = N(z).

2. Choose the order I of moments m.

3. Guess a parameterized functional form for HI in Equation 5.16 and choose initial
parameters of HI .

4. Solve the consumer’s optimization problem and compute V (ε, a, z,m).

5. Simulate the dynamics of the distribution function.

6. Use the time path for the distribution to estimate the law of motion for the moments
m.
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7. Iterate until the parameters of HI converge.

8. Test the goodness of fit for HI using, for example, R−Square. If the fit is satisfactory,
stop, otherwise increase I or choose a different functional form for HI .

The issue with this last model is that the solution is difficult to assess if a minor variation
is made to the model. In addition, the computation time is typically a matter of weeks not
days. Solutions that involve setting a fine grid point on aggregate capital stock are more
accurate but also come at a high computational cost. [12] introduces a faster technique
using projections. The computer solution is nonlinear in idiosyncratic shocks but linear in
aggregate shocks. [13] uses a parameterization of the cross sectional distributions which
enable the use of quadrature instead of Monte Carlo techniques to improve on accuracy.
We propose using the algorithms presented in the last chapter - grid and binary search
based algorithms. They avoid the functional form assumption on the aggregate capital.
Furthermore, we solve for all possible outcomes of the aggregate and idiosyncratic shocks.
This eliminates the wealth density argument in the value function for the households. Our
idea is to set up Markov matrices for all possible random states and find stationary densities
at various initial conditions of the aggregate capital stock. The wealth density is computed
more quickly using eigen analysis and the Perron-Frobenius theorem. We set a grid on the
aggregate capital stock and look for the value in this grid that returns itself (with some
acceptable error) at equilibrium as the first moment of the wealth density.

5.6 Our method

Algorithm 12. : A general algorithm to compute the Stationary Equilibrium
using a grid on aggregate capital stock

Step 1: Set a grid on the aggregate capital stock, KGrid.

Step 2: For each aggregate shock, z, for each value, Kin ∈ KGrid, do the following sub-steps:

Step 2a: Compute the employment, N(z).

Step 2b: Determine the factor prices (r, w) using marginals, and the government policy as a
function of the aggregate shock and employment.

Step 2c: For each employment state, ε

Step 2d: Compute the household’s decision rules, a′ = a′(a, ε; z) and c(a, ε; z), using the com-
puted value function V (a, ε, z)

Step 2e: Compute the invariant density of assets for the employed and unemployed agents using
the Perron-Frobenius Theorem.

Step 3: Compute the mean of the above density for all aggregate shock states. Call this aggre-
gate capital stock Kcomputed.

Step 4: Stop if |Kin −Kcomputed| < ε
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In step 2e, we set up the transition matrices by constructing a 4 ∗ aGrid × 4 ∗ aGrid
a−a′ individual policy transition matrix A from the optimal policy derived using the value
function iteration. The transition matrix ∈ R4m×R4m for (a, ε, z) is constructed as follows:

P (at+1, εt+1, zt+1|(at, εt, zt)) = P (at+1|εt+1, zt+1, (at, εt, zt))P (εt+1, zt+1|(at, εt, zt))
at+1 is independent of εt+1 and zt+1

= P (at+1|(at, εt, zt))P (εt+1, zt+1|(at, εt, zt))

If we use our results from the last chapter: i.e. If Kin is too small then r (the interest
rate) is too large which encourages agents to save and invest more. The policy functions
produce large household assets/wealth with a large density mean. Thus too little capital
in the economy encourages more investment leading to more capital in the next iteration.
Similarly, too much capital leads to less investment and smaller capital stocks in the next
iteration. Using this reasoning, we can avoid the grid approach mentioned above and reuse
the binary search algorithm from the last chapter.

Algorithm 13. : A general algorithm to compute the Stationary Equilibrium
using a binary search on aggregate capital stock grid

Step 1: Choose a wide interval for the aggregate capital stock (Kmin,Kmax). You can choose
the same or slightly smaller interval than the household asset grid. We know from the
above analysis that Kcomputed > Kmin and Kcomputed < Kmax.

Step 2: Let Kmaxnew = (Kmin +Kmax)/2

Step 3: Follow steps 2− 3f in algorithm 12 to compute the stationary density and Kcomputed

value for the input, Kmaxnew

Step 4: if (Kmaxnew > Kcomputed), set Kmax = Kmaxnew ; else Kmin = Kmaxnew

Step 5: if (‖Kmax −Kmin‖ < constant), stop.

5.6.1 Stationary Equilibrium using our method

Since we solve for all possible outcomes of the aggregate and idiosyncratic shocks in-
stead of simulating the economy over time as done in section 5.5, there exists a stationary
equilibrium. The conditions for this state are defined below.

a) For each aggregate shock z, a given set of factor prices (r, w), government policy (m, τ),
a value function V (a, ε, z), a sequence of individual decision rules a′ = a′(a, ε, z)
and c(a, ε, z) that solve the household optimization problem 5.4, and a stationary
probability distribution function Γ(a, ε, z) or equivalently an invariant density function
γ(a, ε, z) for household wealth exist.

b) The distribution of (a, ε, z) is stationary. The aggregate capital K, aggregate consump-
tion C, and aggregate employment N are constant.
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c) Factor prices are equal to their respective marginal products:

r = α

(
z
N

K

)1−α
− δ

w = (1− α)z
(
K

N

)α
.

d) The government’s budget balances: M = T .

e) The aggregate consistency conditions hold:

K =
∑

z∈{zg ,zb}

∑
ε∈{e,u}

∫ ∞
amin

a γ(a, ε, z) da,

N =
∑

z∈{zg ,zb}

∫ ∞
amin

γ(a, ε = e, z) da,

C =
∑

z∈{zg ,zb}

∑
ε∈{e,u}

∫ ∞
amin

c(a, ε, z) γ(a, ε, z) da,

T = τ(wN + rK),

M =
∑

ε∈{zg ,zb}

∑
ε∈{e,u}

∫ ∞
amin

m γ(a, ε = u, z) da,

and finally,

f) The goods market clears:

C +K ′ = F (K,N) + (1− δ)K,

where
K ′ =

∑
z∈{zg ,zb}

∑
ε∈{e,u}

∫ ∞
amin

a′ γ(a, ε, z) da

and
F (Kt, Nt) = zKαN1−α , α ∈ (0, 1).

Recall that K and N are the aggregate capital and employment, respectively, C is
the aggregate consumption for the household, and T and M are the aggregate tax
received and unemployment benefits paid out by the government, respectively.

Before we implement our algorithm for a new example, we want to test it. If we use
an appropriate calibration in this model, we could theoretically reproduce the results -
stationary wealth density - from example 4. Here are the initial conditions

Example 5. Let the agent utility function be given by

u(ct) =
c1−ηt

1− η
, η > 0
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with η = 2.0

Π(ε′|ε) =
(

0.500 0.500
0.0435 0.9565

)
. (5.17)

The firm’s production function as described in 4.5 with α = 0.36, i.e.

F (Kt, Nt) = K0.36
t N1−0.36

t .

Let the individual discounting factor, β, and capital depreciation rate, δ, be 0.995 and 1,
respectively. Let the aggregate shock value be fixed at 1 i.e. (zg = zb = 1). We set the
stochastic transition matrix for (a, ε, z) using the one above, 5.17 :

Π(z′, ε′|z, ε) = Pr{zt+1 = z′, εt+1 = ε′|zt = z, εt = ε} (5.18)

=


0.9565 0.0435 1.0000 0
0.5000 0.5000 0 1.0000
1.0000 0 0.9565 0.0435

0 1.0000 0.5000 0.5000

 (5.19)

There was a minor adjustment made while reproducing results. The perturbation added
to satisfy conditions in the Perron-Frobenius Theorem had to be adjusted to 10−10 instead of
the minimum of the wealth transition matrix. The choice of this constant is made such that
it is smaller than the minimum of the individual wealth policy matrices in both algorithms
- from this chapter and the last chapter. The solution - the stationary density at stationary
equilibrium - to this example is given in Figure 5.2. Both Figures 5.2 and 5.3 have similar
plots. The means - the aggregate capital stock - using an economy with just employment
uncertainty, and an economy with technological and employment uncertainty were 242.5 and
242.3, respectively. Both means were computed using their respective stationary densities.
Since the means are relatively close, we proceed to the next example.

Example 6. Let the agent utility function be given by

u(ct) =
c1−ηt

1− η
, η > 0

with η = 1.5.
Let the firm’s production function be described by

F (Kt, Nt) = ztK
α
t N

1−α
t ,

where α = 0.36. Let the individual discounting factor, β, and capital depreciation rate, δ,
be 0.96 and 0.1, respectively.

Let the technology level be set to zg = 1.03 in good times and zb = 0.97 in bad times.
The calibration is such that the average duration of a boom or recession is 5 years. The
transition matrix for technology is set to

zz(z′|z) =
(

0.80 0.20
0.20 0.80

)
. (5.20)
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Figure 5.2: Density Comparison - using calibration from the previous chapter -
Economy with both - Tech. and Emp. - Shocks

Figure 5.3: Density Comparison - Reproduced Plot from the previous chapter -
Economy with Emp. Shock only

53



www.manaraa.com

The eigenvector of 5.20 is such that equal amount of time is spent in each of the two aggregate
states. The following conditional employment probabilities are used from [17] considering
the annual employment mobility for the US economy:

zgg(ε′|z′ = zg, z = zg, ε) =
(

0.9615 0.0385
0.9581 0.04919

)
,

zbb(ε′|z′ = zb, z = zb, ε) =
(

0.9525 0.0475
0.3952 0.6048

)
.

These employment probabilities imply ergodic distributions with unemployment rates ug =
3.86% and ub = 10.73% in good and bad times, respectively. The conditional employment
probabilities for the transition from good to bad times, are calibrated such that all unemployed
agents stay unemployed and that the unemployment rate is ub in the next period. The
following constraint is used:

uz
Pzuz′u
Pzz′

+ (1− uz)
Pzez′u
Pzz′

= uz′ .

Similarly using the above constraint, the conditional employment probabilities for the tran-
sition from bad to good times are calibrated. In this case the probabilities are set such that
all unemployed agents stay unemployed and that the unemployment rate is ug in the next
period. Using these equations we set the following matrices.

zgb(ε′|z′ = zb, z = zg, ε) =
(

(1− ub)/(1− ug) 1− (1− ub)/(1− ug)
0 1

)
,

zbg(ε′|z′ = zb, z = zg, ε) =
(

1 0
(1− ug/ub) ug/ub

)
.

Thus, the 4× 4 transition matrix Π(zt+1, εt+1|zt, εt) is defined as:

Π(z′, ε′|z, ε) = Pr{zt+1 = z′, εt+1 = ε′|zt = z, εt = ε} (5.21)

=
(

0.80 ∗zgg 0.20 ∗zbg

0.20 ∗zbg 0.80 ∗zbb

)
(5.22)

In our case, we obtain:

Π(z′, ε′|z, ε) = Pr{zt+1 = z′, εt+1 = ε′|zt = z, εt = ε} (5.23)

=


0.7692 0.0308 0.1857 0.0143
0.7665 0.0335 0 0.2000
0.2000 0 0.7620 0.0380
0.1280 0.0720 0.3162 0.4838

 (5.24)

The following set of equations describes the household maximization problem and the
constraint equations:
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The households are uniformly distributed with measure one. Given the factor prices,
(r, w), and government policy (τ, b), the household maximizes

V (a, ε, z) = max
c,a′

[
u(c) + βE{V (a′, ε′, z′}|ε, z

]
, (5.25)

s.t. (5.26)

a′ =
{

(1 + (1− τ)r)a+ (1− τ)w − c, if ε = e
(1 + (1− τ)r)a+m− c, if ε = u

(5.27)

a ≥ amin, (5.28)

along with the stochastic transition matrix, 5.24.

Figure 5.4: Individual Wealth Density Plots Economy with both - Tech. and Emp.
- Shocks

The plot of the stationary density is given in figure 5.4. The aggregate capital stock
value passed in using algorithm 13 was Kmaxnew = 2.9521, and the computed value was
Kcomputed = 2.9515 at convergence. Note that according to the densities in good and bad
times, there is a higher proportion of unemployed households with lower asset wealth in a
recession compared to a boom. Likewise larger proportions of employed households choose
to save more in bad times. At stationary equilibrium the densities in the good and bad
economies can be interpreted as follows: the distribution of assets is constant for both em-
ployed and unemployed agents given the state of the economy, and the number of employed
and unemployed agents are also constant. Furthermore the first derivatives of the wealth
densities are not smooth in the interval of (1, 2.5). This is a minor fix - we can increase
the number of grid points on the individual asset space or use interpolation or projection on
the stationary wealth density. [4] solves this example by using the time-iterative technique
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focusing on transition dynamics and reports similar erratic behavior in the density in the
interval (1, 2.5).
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CHAPTER 6

FUTURE WORK

There are a number of ways to proceed. In the immediate future, the best way to test the
robustness of our algorithm is to apply it to variants of the proposed economies. A wider
individual wealth grid size is a characteristic of a richer economy. This increases the size
of the individual wealth policy matrix, and consequently, the cross-sectional densities and
their moment calculations become cumbersome. Several authors have used approximating
functions in projection method, we propose using a numerical procedure such as principal
component analysis (PCA) to compute the moments of the intermediary stationary distri-
butions. This is a suitable solution to our method, especially in reducing running time.
That is, we would like to project the high-dimension individual policy matrix to a smaller
space and compute moments with ‘acceptable’ error.

A brief description of PCA: Let X ≡ Pr (a′, ε′|a, ε) the transition matrix corresponding
to the stationary density. X ∈ R2m×2m, where m is the size of the finer asset grid. Let
z ∈ R2m×d and B ∈ R2m×d, where d << m and z = XB. Principal component analysis,
rotates the coordinate axes in order to have the new uncorrelated coordinates, principal
components, with certain optimal variance properties. So we could do analysis on a lower
dimension on z instead of doing analysis on X. Columns of z are uncorrelated and capture
most variation of data in X. Consequently statistics can computed at the lower dimen-
sion with less percent error. A choice of d along with the trade-off between error and
computational time should be made. PCA helps us choose the matrix B.

An alternative to dimension reduction (PCA) is to exploit the sparsity of the matrix
directly while computing the stationary probabilities. An educated decision would have to
made to weigh running time versus precision of each technique.
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